Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu PROCESS DESIGN:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot PROCESS DESIGN
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>
Inni nauczyciele Grzegorz Story <Grzegorz.Story@zut.edu.pl>
ECTS (planowane) 9,0 ECTS (formy) 9,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP1 60 4,00,40zaliczenie
wykładyW1 45 5,00,60zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics, thermodynamics courses.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1At the end of the module, the student should be able to define an energy system and identify its major components, explain how different electricity generation technologies work, estimate the associated financial and environmental costs of these systems, and discuss the basic economic and policy factors shaping energy systems. The students will also acquire an appreciation of the central role of civil engineers in providing affordable infrastructure for energy and distribution.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Definitions: energy, power, work, heat, temperature, etc. First and Second Laws of Thermodynamics.15
T-P-2Energy in modern society (trends in fuels, major consumption sectors) and the role of the civil engineer.15
T-P-3Introduction to energy technologies: Energy from waste Biofuels and hydrogen Geotechnical issues in energy systems Oil and gas exploration Wind energy Solar energy Nuclear energy30
60
wykłady
T-W-1Introduction to the fundamental definitions and concepts of energy systems including energy, power, heat, temperature, electricity production, distribution and consumption. An overview of the resources, end-use sectors, and trends affecting energy consumption in modern society. Introduction to the basic science of climate change and its relationship with the global energy system. An overview of the main technologies for electricity generation. Role of civil engineering in the delivery of energy services.45
45

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Student has to take an active part in the classroom.60
A-P-2Student has to read required notes.30
A-P-3Student has to solve homework.30
120
wykłady
A-W-1Participation in lectures.45
A-W-2Reading required texts.105
150

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1The module is delivered by lectures and short visit in the Research Centre in Ostoja.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Written exam (80%) and homework (20%).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_W01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
C-1T-W-1M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_U01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
C-1T-P-1, T-P-2, T-P-3M-1S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_K01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
C-1T-P-1, T-P-2, T-P-3, T-W-1M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_W01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_U01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_K01
The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. T.D. Eastop and D.R. Croft, Energy Efficiency for Engineers and Technologists, Longman Harlow, 1996
  2. Charles M. Gottschalk, Industrial Energy Conservation, John Wiley & Sons, 1996

Literatura dodatkowa

  1. Odum. E. P., Fundamentals of ecology, W.B. Sanders, Philadelphia, 2002

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Definitions: energy, power, work, heat, temperature, etc. First and Second Laws of Thermodynamics.15
T-P-2Energy in modern society (trends in fuels, major consumption sectors) and the role of the civil engineer.15
T-P-3Introduction to energy technologies: Energy from waste Biofuels and hydrogen Geotechnical issues in energy systems Oil and gas exploration Wind energy Solar energy Nuclear energy30
60

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Introduction to the fundamental definitions and concepts of energy systems including energy, power, heat, temperature, electricity production, distribution and consumption. An overview of the resources, end-use sectors, and trends affecting energy consumption in modern society. Introduction to the basic science of climate change and its relationship with the global energy system. An overview of the main technologies for electricity generation. Role of civil engineering in the delivery of energy services.45
45

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Student has to take an active part in the classroom.60
A-P-2Student has to read required notes.30
A-P-3Student has to solve homework.30
120
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures.45
A-W-2Reading required texts.105
150
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_W01The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
Cel przedmiotuC-1At the end of the module, the student should be able to define an energy system and identify its major components, explain how different electricity generation technologies work, estimate the associated financial and environmental costs of these systems, and discuss the basic economic and policy factors shaping energy systems. The students will also acquire an appreciation of the central role of civil engineers in providing affordable infrastructure for energy and distribution.
Treści programoweT-W-1Introduction to the fundamental definitions and concepts of energy systems including energy, power, heat, temperature, electricity production, distribution and consumption. An overview of the resources, end-use sectors, and trends affecting energy consumption in modern society. Introduction to the basic science of climate change and its relationship with the global energy system. An overview of the main technologies for electricity generation. Role of civil engineering in the delivery of energy services.
Metody nauczaniaM-1The module is delivered by lectures and short visit in the Research Centre in Ostoja.
Sposób ocenyS-1Ocena podsumowująca: Written exam (80%) and homework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_U01The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
Cel przedmiotuC-1At the end of the module, the student should be able to define an energy system and identify its major components, explain how different electricity generation technologies work, estimate the associated financial and environmental costs of these systems, and discuss the basic economic and policy factors shaping energy systems. The students will also acquire an appreciation of the central role of civil engineers in providing affordable infrastructure for energy and distribution.
Treści programoweT-P-1Definitions: energy, power, work, heat, temperature, etc. First and Second Laws of Thermodynamics.
T-P-2Energy in modern society (trends in fuels, major consumption sectors) and the role of the civil engineer.
T-P-3Introduction to energy technologies: Energy from waste Biofuels and hydrogen Geotechnical issues in energy systems Oil and gas exploration Wind energy Solar energy Nuclear energy
Metody nauczaniaM-1The module is delivered by lectures and short visit in the Research Centre in Ostoja.
Sposób ocenyS-1Ocena podsumowująca: Written exam (80%) and homework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_K01The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
Cel przedmiotuC-1At the end of the module, the student should be able to define an energy system and identify its major components, explain how different electricity generation technologies work, estimate the associated financial and environmental costs of these systems, and discuss the basic economic and policy factors shaping energy systems. The students will also acquire an appreciation of the central role of civil engineers in providing affordable infrastructure for energy and distribution.
Treści programoweT-P-1Definitions: energy, power, work, heat, temperature, etc. First and Second Laws of Thermodynamics.
T-P-2Energy in modern society (trends in fuels, major consumption sectors) and the role of the civil engineer.
T-P-3Introduction to energy technologies: Energy from waste Biofuels and hydrogen Geotechnical issues in energy systems Oil and gas exploration Wind energy Solar energy Nuclear energy
T-W-1Introduction to the fundamental definitions and concepts of energy systems including energy, power, heat, temperature, electricity production, distribution and consumption. An overview of the resources, end-use sectors, and trends affecting energy consumption in modern society. Introduction to the basic science of climate change and its relationship with the global energy system. An overview of the main technologies for electricity generation. Role of civil engineering in the delivery of energy services.
Metody nauczaniaM-1The module is delivered by lectures and short visit in the Research Centre in Ostoja.
Sposób ocenyS-1Ocena podsumowująca: Written exam (80%) and homework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to design the industrial systems in accordance with current legislation and based on modern computer-aided design tools.
3,5
4,0
4,5
5,0