Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu CHEMICAL REACTORS ENGINEERING:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot CHEMICAL REACTORS ENGINEERING
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>
Inni nauczyciele Grzegorz Story <Grzegorz.Story@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 15 1,00,50zaliczenie
ćwiczenia audytoryjneA1 30 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics, chemistry

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Chemical Reaction Engineering (CRE) is the core subject in the specialties of Chemical Engineering and Technology. It mainly involves the study on industrial-scale chemical processes including chemical reaction rate, materials balance, and influences of macro-engineering factors. The objectives are to achieve the optimization control on industrial reaction process, and reactor development, design and scaling-up. Chemical reaction engineering is also concerned with the exploitation of chemical reactions on a commercial scale. Its tasks are to make students grasp the knowledge as follows: (i) thermodynamics, (ii) kinetics, (iii) transport processes, (iv) types of reactors, (v) operation mode and contacting, (vi) modeling and optimization, and (vii) control.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Introduction to Chemical Reactors Engineering: importance of CRE, example application areas and basic definitions.2
T-A-2General mole balance for ideal reactors: ideal reactor types including batch, CSTR.2
T-A-3Rate laws and stoichiometry: relative rates of reaction, reaction order, rate limiting, half life, stoichiometric tables and conversion.4
T-A-4Theories of reaction rates: Temperature dependence of reaction rates, Arrhenius.4
T-A-5Collection and analysis of batch reactor data: determining reaction order for zero, first irreversible and second order reactions.6
T-A-6Complex reactions: reversible, parallel and series.6
T-A-7Reactor design and sizing: sizing reactors, choice of reactor and reactors in series.6
30
wykłady
T-W-1Mole balances, conversions and design equation:2
T-W-2Kinetic rate laws.2
T-W-3Ideal reactors and isothermal design.2
T-W-4Multiple reactions, yield and selectivity.3
T-W-5Non-isothermal reactor design.3
T-W-6Analysis of reactor performance data.3
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Student has to read required texts.10
A-A-2Take active part in the classroom.30
A-A-3Student has to solve homework.20
60
wykłady
A-W-1Student has to active participation in the lecture.15
A-W-2Student has to read required texts.10
A-W-3Student has to prepare for final examination.5
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1The module is delivered by lectures.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Assesment will be carry out base on examination (80% weight) and coursework (20%).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_W01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_U01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
C-1T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7M-1S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_K01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_W01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_U01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_K01
Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0

Literatura dodatkowa

  1. Fogler, H. S., Elements of Chemical Reaction Engineering., Prentice-Hall PTR, 2006, 9780130473943, ed. Upper Saddle River
  2. Levenspiel, O, Chemical Reaction Engineering, Wiley, New York, 1999, 9780471254249, 3rd ed
  3. Steinfeld, J. I., J. S. Francisco, and W. L. Hase., Chemical Kinetics and Dynamics, Prentice Hall, 1999, 9780137371235, 2nd ed. Upper Saddle River

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Introduction to Chemical Reactors Engineering: importance of CRE, example application areas and basic definitions.2
T-A-2General mole balance for ideal reactors: ideal reactor types including batch, CSTR.2
T-A-3Rate laws and stoichiometry: relative rates of reaction, reaction order, rate limiting, half life, stoichiometric tables and conversion.4
T-A-4Theories of reaction rates: Temperature dependence of reaction rates, Arrhenius.4
T-A-5Collection and analysis of batch reactor data: determining reaction order for zero, first irreversible and second order reactions.6
T-A-6Complex reactions: reversible, parallel and series.6
T-A-7Reactor design and sizing: sizing reactors, choice of reactor and reactors in series.6
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Mole balances, conversions and design equation:2
T-W-2Kinetic rate laws.2
T-W-3Ideal reactors and isothermal design.2
T-W-4Multiple reactions, yield and selectivity.3
T-W-5Non-isothermal reactor design.3
T-W-6Analysis of reactor performance data.3
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Student has to read required texts.10
A-A-2Take active part in the classroom.30
A-A-3Student has to solve homework.20
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Student has to active participation in the lecture.15
A-W-2Student has to read required texts.10
A-W-3Student has to prepare for final examination.5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_W01Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
Cel przedmiotuC-1Chemical Reaction Engineering (CRE) is the core subject in the specialties of Chemical Engineering and Technology. It mainly involves the study on industrial-scale chemical processes including chemical reaction rate, materials balance, and influences of macro-engineering factors. The objectives are to achieve the optimization control on industrial reaction process, and reactor development, design and scaling-up. Chemical reaction engineering is also concerned with the exploitation of chemical reactions on a commercial scale. Its tasks are to make students grasp the knowledge as follows: (i) thermodynamics, (ii) kinetics, (iii) transport processes, (iv) types of reactors, (v) operation mode and contacting, (vi) modeling and optimization, and (vii) control.
Treści programoweT-W-1Mole balances, conversions and design equation:
T-W-2Kinetic rate laws.
T-W-3Ideal reactors and isothermal design.
T-W-4Multiple reactions, yield and selectivity.
T-W-5Non-isothermal reactor design.
T-W-6Analysis of reactor performance data.
Metody nauczaniaM-1The module is delivered by lectures.
Sposób ocenyS-1Ocena podsumowująca: Assesment will be carry out base on examination (80% weight) and coursework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_U01Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
Cel przedmiotuC-1Chemical Reaction Engineering (CRE) is the core subject in the specialties of Chemical Engineering and Technology. It mainly involves the study on industrial-scale chemical processes including chemical reaction rate, materials balance, and influences of macro-engineering factors. The objectives are to achieve the optimization control on industrial reaction process, and reactor development, design and scaling-up. Chemical reaction engineering is also concerned with the exploitation of chemical reactions on a commercial scale. Its tasks are to make students grasp the knowledge as follows: (i) thermodynamics, (ii) kinetics, (iii) transport processes, (iv) types of reactors, (v) operation mode and contacting, (vi) modeling and optimization, and (vii) control.
Treści programoweT-A-1Introduction to Chemical Reactors Engineering: importance of CRE, example application areas and basic definitions.
T-A-2General mole balance for ideal reactors: ideal reactor types including batch, CSTR.
T-A-3Rate laws and stoichiometry: relative rates of reaction, reaction order, rate limiting, half life, stoichiometric tables and conversion.
T-A-4Theories of reaction rates: Temperature dependence of reaction rates, Arrhenius.
T-A-5Collection and analysis of batch reactor data: determining reaction order for zero, first irreversible and second order reactions.
T-A-6Complex reactions: reversible, parallel and series.
T-A-7Reactor design and sizing: sizing reactors, choice of reactor and reactors in series.
Metody nauczaniaM-1The module is delivered by lectures.
Sposób ocenyS-1Ocena podsumowująca: Assesment will be carry out base on examination (80% weight) and coursework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_K01Students gain knowledge in the formulation and solution of equations of mathematical models of various types of chemical reactors.
Cel przedmiotuC-1Chemical Reaction Engineering (CRE) is the core subject in the specialties of Chemical Engineering and Technology. It mainly involves the study on industrial-scale chemical processes including chemical reaction rate, materials balance, and influences of macro-engineering factors. The objectives are to achieve the optimization control on industrial reaction process, and reactor development, design and scaling-up. Chemical reaction engineering is also concerned with the exploitation of chemical reactions on a commercial scale. Its tasks are to make students grasp the knowledge as follows: (i) thermodynamics, (ii) kinetics, (iii) transport processes, (iv) types of reactors, (v) operation mode and contacting, (vi) modeling and optimization, and (vii) control.
Treści programoweT-W-1Mole balances, conversions and design equation:
T-W-2Kinetic rate laws.
T-W-3Ideal reactors and isothermal design.
T-W-4Multiple reactions, yield and selectivity.
T-W-5Non-isothermal reactor design.
T-W-6Analysis of reactor performance data.
T-A-1Introduction to Chemical Reactors Engineering: importance of CRE, example application areas and basic definitions.
T-A-2General mole balance for ideal reactors: ideal reactor types including batch, CSTR.
T-A-3Rate laws and stoichiometry: relative rates of reaction, reaction order, rate limiting, half life, stoichiometric tables and conversion.
T-A-4Theories of reaction rates: Temperature dependence of reaction rates, Arrhenius.
T-A-5Collection and analysis of batch reactor data: determining reaction order for zero, first irreversible and second order reactions.
T-A-6Complex reactions: reversible, parallel and series.
T-A-7Reactor design and sizing: sizing reactors, choice of reactor and reactors in series.
Metody nauczaniaM-1The module is delivered by lectures.
Sposób ocenyS-1Ocena podsumowująca: Assesment will be carry out base on examination (80% weight) and coursework (20%).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Students is able to define and solution of equations of mathematical models of various types of chemical reactors.
3,5
4,0
4,5
5,0