Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu Structural Dynamics:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Structural Dynamics
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Teorii Konstrukcji
Nauczyciel odpowiedzialny Radosław Iwankiewicz <riwankiewicz@zut.edu.pl>
Inni nauczyciele Radosław Iwankiewicz <riwankiewicz@zut.edu.pl>, Hanna Weber <Hanna.Weber@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 30 2,00,51egzamin
ćwiczenia audytoryjneA1 15 1,00,49zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics courses pertinent to BSc in Engineering degree course
W-2Structural Mechanics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.2
T-A-2Example problems: derivation of equations of motion of MDOF systems.3
T-A-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.5
T-A-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.1
T-A-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.4
15
wykłady
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.3
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.6
T-W-3Lagrange’s equations.2
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.8
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.3
T-W-6Stability of equilibrium positions.3
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).5
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Attending the example classes.15
A-A-2Private (home) study.10
A-A-3Home assignments (two major assignments).6
31
wykłady
A-W-1Attending the lectures.30
A-W-2Private (home) study.17
A-W-3Studying/revision for the final exam.12
59

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lectures.
M-2Solving problems and home assignments.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_null_W01
Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
C-1, C-2, C-4, C-3T-W-6, T-W-7, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-A-1, T-A-2, T-A-4, T-A-5, T-A-3M-2, M-1S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_null_U01
Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
C-1, C-2, C-4, C-3T-W-6, T-W-7, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-A-1, T-A-2, T-A-4, T-A-5, T-A-3M-2, M-1S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiA_2-_null_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
C-1, C-2, C-4, C-3T-W-6, T-W-7, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-A-1, T-A-2, T-A-4, T-A-5, T-A-3M-2, M-1S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_null_W01
Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis of vibrations and elastic stability.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_null_U01
Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of vibrations and elastic stability and to interpret the results.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WBiA_2-_null_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. W.C. Hurty and M.F. Rubinstein, Dynamics of Structures, Englewood Cliffs: Prentice Hall, 1964
  2. S.S. Rao, Mechanical Vibrations, Addison-Wesley, 1995, 3rd edition
  3. C.F. Beards, Engineering Vibration Analysis with Application to Control Systems, Edward Arnold, 1995
  4. M. Geradin, D.Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics, J. Wiley, 1994

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.2
T-A-2Example problems: derivation of equations of motion of MDOF systems.3
T-A-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.5
T-A-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.1
T-A-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.4
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.3
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.6
T-W-3Lagrange’s equations.2
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.8
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.3
T-W-6Stability of equilibrium positions.3
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).5
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Attending the example classes.15
A-A-2Private (home) study.10
A-A-3Home assignments (two major assignments).6
31
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Attending the lectures.30
A-W-2Private (home) study.17
A-W-3Studying/revision for the final exam.12
59
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_null_W01Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
Treści programoweT-W-6Stability of equilibrium positions.
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-3Lagrange’s equations.
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-A-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-A-2Example problems: derivation of equations of motion of MDOF systems.
T-A-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-A-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
T-A-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
Metody nauczaniaM-2Solving problems and home assignments.
M-1Lectures.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis of vibrations and elastic stability.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_null_U01Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
Treści programoweT-W-6Stability of equilibrium positions.
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-3Lagrange’s equations.
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-A-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-A-2Example problems: derivation of equations of motion of MDOF systems.
T-A-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-A-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
T-A-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
Metody nauczaniaM-2Solving problems and home assignments.
M-1Lectures.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of vibrations and elastic stability and to interpret the results.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiA_2-_null_K01Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
Treści programoweT-W-6Stability of equilibrium positions.
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-3Lagrange’s equations.
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-A-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-A-2Example problems: derivation of equations of motion of MDOF systems.
T-A-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-A-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
T-A-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
Metody nauczaniaM-2Solving problems and home assignments.
M-1Lectures.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0