Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)
Sylabus przedmiotu Sustainable Construction:
Informacje podstawowe
Kierunek studiów | Civil Engineering | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Sustainable Construction | ||
Specjalność | Engineering Structures | ||
Jednostka prowadząca | Katedra Mieszkalnictwa i Podstaw Techniczno-Ekologicznych Architektury | ||
Nauczyciel odpowiedzialny | Krystyna Januszkiewicz <Krystyna.Januszkiewicz@zut.edu.pl> | ||
Inni nauczyciele | Professor Visiting <Visiting@zut.edu.pl> | ||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | 7 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Intermediate skills in structural design. Basic knowledge of technical aspects such as geometry construction, material performance, MEP, law regulations. Operative in structural design programs, BIM - not necessary course programs. Basic knowledge of sustainable development and the ecological aspects of building structures. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | The aim of the course is to increase knowledge in structural design and the sustainable structural engineering. Sustainable Construction is the leading reference for the design, construction, and operation of high performance green buildings. With broad coverage including architecture, engineering, and construction this course delivers detailed information on all aspects of the green building process, from materials selection to building systems and more. |
C-2 | Additionally developing skills in implementation of digital tools during design process. Course can integrate architecture and structural engineering students. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | The task is to design a landforms, public use structural object in a municipality with an attractive landscape, located close to a large urban area, e.g. the city of Szczecin. | 15 |
15 | ||
wykłady | ||
T-W-1 | How currently structural engineers should incorporate sustainability concepts in their designs. | 1 |
T-W-2 | Innovative methods address the environmental impact, energy use, and other sustainability issues faced during planning and design of buildings. | 1 |
T-W-3 | Five sustainable structural design methodologies: Minimizing Material Use, Minimizing Material Production Energy, Minimizing Embodied Energy, Life-Cycle Analysis/Inventory/Assessment, and Maximizing Structural System Reuse. | 1 |
T-W-4 | Research review into the qualification and development of the sustainable properties of construction materials and methods for optimizing the environmental impact of structural design. | 1 |
T-W-5 | Curvilinear structural envelops in current building engineering and reduction wind loads. | 1 |
T-W-6 | Parametric digital tools and designing sustainable building structures. | 1 |
T-W-7 | Research review into the effect that structural form, system and magnitude have on building design relative to a structure’s overall sustainable qualities (planning, design and implementation). | 1 |
T-W-8 | The aspects of a project’s form, structural system and magnitude directly relate the issues facing both structural engineers and architects in attempts to achieve more sustainable structural designs. | 1 |
T-W-9 | Review of current Leadership in Energy and Environmental Design Green Building document’s applicability for structural system design. | 1 |
T-W-10 | Shaping complex geometry with using ESO evolutionary digital optimization tools. | 1 |
T-W-11 | Presentation and review of the role project size and material type play in structural and sustainable design. | 1 |
T-W-12 | Presentation and discussion of the role sustainability plays in three major construction materials (steel, cast-in-place reinforced concrete and prestressed/precast concrete). | 1 |
T-W-13 | Sustainable design aspect qualities by construction type (wooden structures). | 1 |
T-W-14 | Description and review of current the concept of life cycle analysis and its implication on structural design. The Structure of Production Costs in the Sustainable Development of Construction Enterprises. | 1 |
T-W-15 | Climate change adopted building structure - responsive envelopes and the future challenges. | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Participation in lectures | 15 |
A-P-2 | Project work | 15 |
30 | ||
wykłady | ||
A-W-1 | Participation in lectures and study required readings | 15 |
A-W-2 | Study required and selected supplementary readings | 15 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Lectures with Power Point presentations by the subject leader. Additionally, the discussion with the current thinking on economics, climate change, net zero buildings, and more, with contributions by leader in the field that illustrate the most recent shifts in thinking and practice. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Evaluation grade of lectures |
S-2 | Ocena formująca: Execution of design project |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_ES/D/05-1_W01 Knows technical and technological conditions of design Sustainable Constructions and their practice. Understands basic principles and spatial relations in the sustainable structural design. | B-A_2A_W02, B-A_2A_W05 | — | — | C-1, C-2 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1 | M-1 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_ES/D/05-1_U01 Is able to adjust the method to a structural design task, experiments and uses computer software. In his/her work, pursues an individual engineer attitude which is manifested through his/her approach to reality the sustainable structural design. | B-A_2A_U16, B-A_2A_U11 | — | — | C-1, C-2 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1 | M-1 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_ES/D/05-1_K01 Respects and protects the integrity of the natural and cultural environment. | B-A_2A_K03 | — | — | C-1, C-2 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15, T-P-1 | M-1 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_ES/D/05-1_W01 Knows technical and technological conditions of design Sustainable Constructions and their practice. Understands basic principles and spatial relations in the sustainable structural design. | 2,0 | |
3,0 | The student is poor in clear explanations, sustainable construction design objectives, goals and processes in relation to a selected design project analysis, potential alternatives, and interim stages of design development. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_ES/D/05-1_U01 Is able to adjust the method to a structural design task, experiments and uses computer software. In his/her work, pursues an individual engineer attitude which is manifested through his/her approach to reality the sustainable structural design. | 2,0 | |
3,0 | The student is poor in demonstration of an ability to evaluate and critically assess specific sustainable construction design outcomes; in relation to initial sustainable design goals, comparative methods or techniques, or in relation to essen¬tial or recommended course reading. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_ES/D/05-1_K01 Respects and protects the integrity of the natural and cultural environment. | 2,0 | |
3,0 | The student is poor in ability a clear demonstration of an understanding of the sustainable structures design po¬tentials and potential further application of the knowledge in practice. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Januszkiewicz K. and Paszkowska N. E., Climate change adopted building envelope for the urban environment, A new approach to architectural design, Go Green, Hofburg 2-4 November Vienna 2016, 16th : International Multidisciplinary Scientific Geoconference SGEM 2016, 2016, Book 6, Nano, Bio and Green Technologies for a sustainable Future, Vol III : 515-522.
- Kibert Ch. J., Sustainable Construction: Green Building Design and Delivery, John Wiley and Sons, London, 2016
- Danatzko J.M., Sezen H., Sustainable Structural Design Methodologies, ASCE Library Access provided by ZUT, 2011
- Krygiel E., Nies B., Green BIM: Successful Sustainable Design with Building Information Modeling, John Wiley and Sons, London, 2018
- Januszkiewicz K., Shaping complex geometry with using ESO evolutionary digital optimization tools. A new approach to architectural design, International Multidisciplinary Scientific Geoconference SGEM, Albena, 2017, Vol.17, No. 62, pp. 749-756.
- Gjorv O. E., Sakai K., Concrete Technology for a Sustainable Development in 21st Century, John Wiley and Sons, London, 2014
- Bollinger K., Grohman M., Tessmann O., Form, Force, Performance. Multi-parametric Structural Design, AD, 2008, Vol. 78, No. 2–3, pp. 20–25.
- Kowalski K., Januszkiewicz K., A parametric green architecture in urban space. A new approach to design environmental-friendly buildings, International Multidisciplinary Scientific Geoconference SGEM, Vienna, 2017, pp. 735-742.
- Dh. Yeo, R. D. Gabbai, Sustainable design of reinforced concrete structures through embodied energy optimization, Energy and Buildings, Elsevier, 2011, Vol. 43, Issue 8, pp. 2028-2033.
- Lechner N., Heating, Cooling, Lighting: Sustainable Design Methods for Architects, John Wiley & Sons, London, 2014
- Crawford R H., Life Cycle Assessment in the Built Environment, Taylor and Francis, London, 2011
- Pabian A., Tomski P. (ed.), Management in sustainable construction industry, Czestochowa University of Technology, Czestochowa, 2014
Literatura dodatkowa
- Januszkiewicz K., Glass Fiber-reinforced Concrete as a Component the non linear shaped structural envelop in Current Architecture, 11th Central European Congress on Concrete Engineering, HAINBURG (AUSTRIA), 2015, 363-366 (full version CD).
- Januszkiewicz K., Banachowicz M., Glass as a Component of Curvilinear Architecture in 21st Century, Procedia Engineering 161, Elsevier Science Direct (2016) : 1490-1495., 2016
- Dimčić Miloš, Structural Optimization of Grid Shells based on Genetic Algorithms, Institut für Tragkonstruktionen und Konstruktives Entwerfen, Universität Stuttgart, Stuttgart, 2011
- Januszkiewicz K., Curvilinear structural envelops in current architecture, Architecture Civil Engineering Environment, 2017, Vol. 10, pp. 11-16.
- Baliński G., Januszkiewicz K., Digial Tectonic Design as a new Approach to Architectural Design Methodology, Procedia Engineering 161, 2016, pp. 1504-1508.
- Januszkiewicz K., Evolutionary digital tools in designing nonlinear shaping of concrete structures in current architecture, Central European Congress on Concrete Engineering, Concrete Structures in Urban Areas, Wrocław, 2013
- Dh. Yeo, R. D. Gabbai, Sustainable design of reinforced concrete structures through embodied energy optimization, Energy and Buildings, Elsevier, 2011, Vol. 43, No. 8., pp. 2028-2033.
- Moon K. S., Sustainable structural engineering strategies for tall buildings, John Wiley and Sons, London, 2016