Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)

Sylabus przedmiotu Metody numeryczne:

Informacje podstawowe

Kierunek studiów Energetyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Metody numeryczne
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Technologii Energetycznych
Nauczyciel odpowiedzialny Aleksandra Borsukiewicz <Aleksandra.Borsukiewicz@zut.edu.pl>
Inni nauczyciele Barbara Zakrzewska <Barbara.Zakrzewska@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 15 2,00,50zaliczenie
wykładyW6 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawy termodynamiki i wymiany ciepła.
W-2Podstawy mechaniki płynów

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta z metodyką numerycznej mechaniki płynów (CFD) i możliwościami jej wykorzystania do projektowania w energetyce
C-2Zapoznanie studenta z metodyką i możliwościami wykorzystania symulatorów procesowych do modelowania systemów energetycznych
C-3Celem zajęć laboratoryjnych jest ukształtowanie umiejętności z zakresu wykorzystywania komercyjnie dostepnego oprogramowania CFD oraz symulatorów procesowych w praktycznych zastosowaniach

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zastosowanie metod numerycznych do analizy zjawisk transportu pędu, masy i energii w praktycznych zagadnieniach wyminy ciepła i masy. Praktyczne wykorzystanie możliwości programów symulacyjnych w obliczeniach termodynamicznych (cieplnych) – zindywidualizowane obliczenia projektowe wybranych zagadnień cieplnych.15
15
wykłady
T-W-1Podstawy analizy numerycznej. Możliwości zastosowanie metod numerycznych w obszarze zagadnień związanych z wyminą ciepła i termodynamiką. Prawa zachowania pędu, energii i masy w płynach: Różniczkowe równania ciągłości, bilansu pędu, masy i energii, uogólnione równanie przenoszenia (RP), warunki jednoznaczności rozwiązań RP, typy warunków brzegowych .Podstawy numerycznego rozwiązywania równań różniczkowych; Metody dyskretyzacji RP – objętości kontrolnej i elementu skończonego, schematy interpolacyjne, algorytmy sprzęgania równania ciągłości, numeryczne rozwiązania układów równań. Pakiety komercyjne; typy pakietów, cechy charakterystyczne i użytkowe, wymagania hardware’owe.15
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Zajecia praktyczne z wykorzystaniem specjalistycznego oprogramowania.15
A-L-2Praca własna studenta30
A-L-3Konsultacje5
50
wykłady
A-W-1Multimedialny wykład informacyjny15
A-W-2Praca własna studenta8
A-W-3Konsultacje2
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Ćwiczenia laboratoryjne z użyciem komputera

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Pisemne zaliczenie wykładów
S-2Ocena podsumowująca: Sprawdzian praktyczny - przeprowadzenie modelowania na wybranym przykładzie
S-3Ocena formująca: Sprawozdania pisemne z wykonanych zadań problemowych

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie objaśnic zasady i definicje związane z medodami numerycznymii teorią systemów w odniesieniu do zagadnień cieplnych.
ENE_1A_W02, ENE_1A_W01C-2, C-1T-W-1M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_U01
W wyniku odbytych zajęć student ma umiejetność wykonania symulacji numerycznych podstawowych podstawowych procesów cieplnychz wykorzystaniem komercyjnie dostepnego oprogramowania.
ENE_1A_U20C-3T-L-1M-2S-3, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_K01
Student ma świadomość potrzeby dokształcania się oraz podnoszenia swoich umiejętności i kompetencji zawodowych
ENE_1A_K01C-3T-W-1, T-L-1M-2S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C33_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie objaśnic zasady i definicje związane z medodami numerycznymii teorią systemów w odniesieniu do zagadnień cieplnych.
2,0Student nie opanował podstawowej wiedzy podanej na wykładzie ani na ćwiczeniach laboratoryjnych
3,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych
3,5Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w stopniu dostatecznym
4,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w stopniu dobrym
4,5Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w znacznym stopniu
5,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i w pełni wykorzystać praktycznie

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C33_U01
W wyniku odbytych zajęć student ma umiejetność wykonania symulacji numerycznych podstawowych podstawowych procesów cieplnychz wykorzystaniem komercyjnie dostepnego oprogramowania.
2,0Student nie potrafi wykorzystać wiedzy teoretycznej do samodzielnego sformułowania modelu obliczeniowego. Nie potrafi zastosować żadnej z metod obliczeniowych podanych na wykładzie i ćwiczeniach laboratoryjnych
3,0Student poprawienie dobiera metody numeryczne oraz potrafi je zastosować w sposób odtwórczy do rozwiązania wybranych problemów
3,5
4,0Student poprawienie dobiera metody numeryczne oraz potrafi je zastosować do rozwiązania wybranych problemów
4,5
5,0Student potrafi samodzielnie i bezbłędnie zastosować poznane metody numeryczne do symulacji i analizy zadanego problemu

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C33_K01
Student ma świadomość potrzeby dokształcania się oraz podnoszenia swoich umiejętności i kompetencji zawodowych
2,0
3,0Student w podstawowym stopniu rozumie potrzebę ciągłego kształcenia się i doskonalenia zawodowego
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Jaworski Zdzisław, Numeryczna mechanika płynów w inżynierii chemicznej i procesowej, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2005
  2. Prosnak W.J., Równania klasycznej mechaniki płynów, PWN, Warszawa, 2006
  3. Kazimierski Z, Podstawy mechaniki płynów i metod komputerowej symulacji przepływów, Wydawnictwo Politechniki Łódzkiej, Łódź, 2004
  4. Praca zbiorowa pod redakcją J. Szarguta, Modelowanie numeryczne pól temperatury, WNT, Warszawa, 1992
  5. J. Jeżowski, Wprowadzenie do projektowania systemów technologii chemicznej, Część 1. Teoria, Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002
  6. J. Jeżowski, A. Jeżowska, Wprowadzenie do projektowania systemów technologii chemicznej, Część 2. Przykłady obliczeń, Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002

Literatura dodatkowa

  1. Andrzej Ziębik, Systemy energetyczne, Politechnika Śląska, Gliwice, 1989
  2. Andrzej Ziębik, Przykłady obliczeniowe z systemów energetycznych, Politechnika Śląska, Gliwice, 1990
  3. Jan Szargut, Analiza termodynamiczna i ekonomiczna w energetyce przemyslowej, WNT, Warszawa, 1983

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zastosowanie metod numerycznych do analizy zjawisk transportu pędu, masy i energii w praktycznych zagadnieniach wyminy ciepła i masy. Praktyczne wykorzystanie możliwości programów symulacyjnych w obliczeniach termodynamicznych (cieplnych) – zindywidualizowane obliczenia projektowe wybranych zagadnień cieplnych.15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawy analizy numerycznej. Możliwości zastosowanie metod numerycznych w obszarze zagadnień związanych z wyminą ciepła i termodynamiką. Prawa zachowania pędu, energii i masy w płynach: Różniczkowe równania ciągłości, bilansu pędu, masy i energii, uogólnione równanie przenoszenia (RP), warunki jednoznaczności rozwiązań RP, typy warunków brzegowych .Podstawy numerycznego rozwiązywania równań różniczkowych; Metody dyskretyzacji RP – objętości kontrolnej i elementu skończonego, schematy interpolacyjne, algorytmy sprzęgania równania ciągłości, numeryczne rozwiązania układów równań. Pakiety komercyjne; typy pakietów, cechy charakterystyczne i użytkowe, wymagania hardware’owe.15
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Zajecia praktyczne z wykorzystaniem specjalistycznego oprogramowania.15
A-L-2Praca własna studenta30
A-L-3Konsultacje5
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Multimedialny wykład informacyjny15
A-W-2Praca własna studenta8
A-W-3Konsultacje2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C33_W01W wyniku przeprowadzonych zajęć student powinien być w stanie objaśnic zasady i definicje związane z medodami numerycznymii teorią systemów w odniesieniu do zagadnień cieplnych.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_W02Ma wiedzę w zakresie matematyki na poziomie wyższym niezbędnym do ilościowego opisu i analizy problemów oraz rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
ENE_1A_W01Zna podstawowe metody i procedury numeryczne oraz zagadnienia programowania i możliwości obliczeń numerycznych
Cel przedmiotuC-2Zapoznanie studenta z metodyką i możliwościami wykorzystania symulatorów procesowych do modelowania systemów energetycznych
C-1Zapoznanie studenta z metodyką numerycznej mechaniki płynów (CFD) i możliwościami jej wykorzystania do projektowania w energetyce
Treści programoweT-W-1Podstawy analizy numerycznej. Możliwości zastosowanie metod numerycznych w obszarze zagadnień związanych z wyminą ciepła i termodynamiką. Prawa zachowania pędu, energii i masy w płynach: Różniczkowe równania ciągłości, bilansu pędu, masy i energii, uogólnione równanie przenoszenia (RP), warunki jednoznaczności rozwiązań RP, typy warunków brzegowych .Podstawy numerycznego rozwiązywania równań różniczkowych; Metody dyskretyzacji RP – objętości kontrolnej i elementu skończonego, schematy interpolacyjne, algorytmy sprzęgania równania ciągłości, numeryczne rozwiązania układów równań. Pakiety komercyjne; typy pakietów, cechy charakterystyczne i użytkowe, wymagania hardware’owe.
Metody nauczaniaM-1Wykład informacyjny
Sposób ocenyS-1Ocena podsumowująca: Pisemne zaliczenie wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy podanej na wykładzie ani na ćwiczeniach laboratoryjnych
3,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych
3,5Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w stopniu dostatecznym
4,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w stopniu dobrym
4,5Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i wykorzystać w znacznym stopniu
5,0Student opanował podstawowa wiedze podana na wykładzie i na ćwiczeniach laboratoryjnych i potrafi ja zinterpretować i w pełni wykorzystać praktycznie
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C33_U01W wyniku odbytych zajęć student ma umiejetność wykonania symulacji numerycznych podstawowych podstawowych procesów cieplnychz wykorzystaniem komercyjnie dostepnego oprogramowania.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_U20Umie opracować i przedstawić projekt urządzenia, procesu lub systemu energetycznego
Cel przedmiotuC-3Celem zajęć laboratoryjnych jest ukształtowanie umiejętności z zakresu wykorzystywania komercyjnie dostepnego oprogramowania CFD oraz symulatorów procesowych w praktycznych zastosowaniach
Treści programoweT-L-1Zastosowanie metod numerycznych do analizy zjawisk transportu pędu, masy i energii w praktycznych zagadnieniach wyminy ciepła i masy. Praktyczne wykorzystanie możliwości programów symulacyjnych w obliczeniach termodynamicznych (cieplnych) – zindywidualizowane obliczenia projektowe wybranych zagadnień cieplnych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-3Ocena formująca: Sprawozdania pisemne z wykonanych zadań problemowych
S-2Ocena podsumowująca: Sprawdzian praktyczny - przeprowadzenie modelowania na wybranym przykładzie
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wykorzystać wiedzy teoretycznej do samodzielnego sformułowania modelu obliczeniowego. Nie potrafi zastosować żadnej z metod obliczeniowych podanych na wykładzie i ćwiczeniach laboratoryjnych
3,0Student poprawienie dobiera metody numeryczne oraz potrafi je zastosować w sposób odtwórczy do rozwiązania wybranych problemów
3,5
4,0Student poprawienie dobiera metody numeryczne oraz potrafi je zastosować do rozwiązania wybranych problemów
4,5
5,0Student potrafi samodzielnie i bezbłędnie zastosować poznane metody numeryczne do symulacji i analizy zadanego problemu
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C33_K01Student ma świadomość potrzeby dokształcania się oraz podnoszenia swoich umiejętności i kompetencji zawodowych
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_K01Rozumie potrzebę ciągłego dokształcania się – podnoszenia kompetencji zawodowych i osobistych
Cel przedmiotuC-3Celem zajęć laboratoryjnych jest ukształtowanie umiejętności z zakresu wykorzystywania komercyjnie dostepnego oprogramowania CFD oraz symulatorów procesowych w praktycznych zastosowaniach
Treści programoweT-W-1Podstawy analizy numerycznej. Możliwości zastosowanie metod numerycznych w obszarze zagadnień związanych z wyminą ciepła i termodynamiką. Prawa zachowania pędu, energii i masy w płynach: Różniczkowe równania ciągłości, bilansu pędu, masy i energii, uogólnione równanie przenoszenia (RP), warunki jednoznaczności rozwiązań RP, typy warunków brzegowych .Podstawy numerycznego rozwiązywania równań różniczkowych; Metody dyskretyzacji RP – objętości kontrolnej i elementu skończonego, schematy interpolacyjne, algorytmy sprzęgania równania ciągłości, numeryczne rozwiązania układów równań. Pakiety komercyjne; typy pakietów, cechy charakterystyczne i użytkowe, wymagania hardware’owe.
T-L-1Zastosowanie metod numerycznych do analizy zjawisk transportu pędu, masy i energii w praktycznych zagadnieniach wyminy ciepła i masy. Praktyczne wykorzystanie możliwości programów symulacyjnych w obliczeniach termodynamicznych (cieplnych) – zindywidualizowane obliczenia projektowe wybranych zagadnień cieplnych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-3Ocena formująca: Sprawozdania pisemne z wykonanych zadań problemowych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student w podstawowym stopniu rozumie potrzebę ciągłego kształcenia się i doskonalenia zawodowego
3,5
4,0
4,5
5,0