Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S1)

Sylabus przedmiotu Podstawy automatyki i robotyki:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy automatyki i robotyki
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Arkadiusz Parus <Arkadiusz.Parus@zut.edu.pl>
Inni nauczyciele Paweł Herbin <Pawel.Herbin@zut.edu.pl>, Arkadiusz Parus <Arkadiusz.Parus@zut.edu.pl>, Piotr Pawlukowicz <Piotr.Pawlukowicz@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL5 30 2,00,38zaliczenie
wykładyW5 30 2,00,62egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza z zakresu procesów i technik wytwarzania
W-2Znajomość algebry i analizy matematycznej w stopniu podstawowym.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z istotą robotyzacji oraz przesłankami stymulującymi rozwój robotyzacji.
C-2Zapoznanie z budową i sterowaniem robotów przemysłowych.
C-3Zapoznanie studentów z podstawami automatyki, sterowania i automatycznej regulacji.
C-4Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych.
C-5Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania.
C-6Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie do zajęć, omówienie zasad BHP, zapoznanie studentów z planem zajęć i wymaganiami.1
T-L-2Automatyzacja (na przykładzie obrabiarek znajdujących się na hali technologicznej ITM)2
T-L-3Robotyzacja na przykładzie robotów AM80, Fanuc F420S oraz Kuka KR 125.4
T-L-4Efektory robotów przemysłowych, budowa i zastosowanie.2
T-L-5Kinematyka: struktury kinematyczne robotów przemysłowych, zagadnienie kinematyki prostej.2
T-L-6Badanie powtarzalności pozycjonowania robota przemysłowego.2
T-L-7Idea programowania robotów przemysłowych metodą off-line2
T-L-8Sterowanie elementami wykonawczymi, w szczególności napędami elektrycznymi prądu stałego oraz napędami krokowymi.2
T-L-9Przetwarzanie sygnałów sterujących w układach sprzężenia zwrotnego serwonapędów.2
T-L-10Analiza stabilności i jakości układu regulacji na podstawie danych rzeczywistych i przy wykorzystaniu programu Matlab/Simulink4
T-L-11Analiza funkcji przekaźnikowych oraz synteza układów cyfrowych przeprowadzona w programie do symulacji układów.4
T-L-12Analiza i badanie funkcji logicznych zaimplementowanych w sterowniku PLC.2
T-L-13Zaliczenie końcowe1
30
wykłady
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.4
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.4
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.4
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.4
T-W-5Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.4
T-W-6Rodzaje robotów - ich cechy charakterystyczne oraz główne elementy składowe.2
T-W-7Kinematyka robotów - wyznaczanie trajektorii. Dynamika robotów.2
T-W-8Napędy, sterowanie pozycyjne, serwomechanizmy.2
T-W-9Chwytaki i ich zastosowania.2
T-W-10Podstawy programowania robotów.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach30
A-L-2Przygotowanie do zajęć laboratoryjnych na podstawie literatury i instrukcji.6
A-L-3Opracowanie indywidualnych (lub grupowych) sprawozdań laboratoryjnych.5
A-L-4Omówienie i ocena sprawozdań.4
A-L-5Przygotowanie do zaliczenia ćwiczeń laboratoryjnych5
50
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2Przygotowanie do kolokwium zaliczeniowego.12
A-W-3Praca własna z podręcznikami. Zagadnienia uzupełniające wskazanew czasie zajęć.8
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z elementami konwersatoryjnymi. Wyjaśnienie występujących zjawisk i problemów.
M-2Laboratorium: pokaz i demonstracja, realizacja przez studentów ćwiczeń laboratoryjnych.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie w formie pisemnej lub ustnej obejmujące zagadnienia realizowane w trzkcie zajęć laboratoryjnych i wykładowych.
S-2Ocena formująca: Ocena wybranych osiągnięć studenta realizowana w trakcie wprowadzenia do zajęć laboratoryjnych lub w trakcie ich trwania.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C18_W01
Zdobycie uporządkowane wiedzy na temat podstawowych pojęć automatyki, działania układów automatycznej regulacji, podstawowych technik badań i projektowania układów regulacji, projektowanie i analizowanie układów sterowania cyfrowego.
MBM_1A_W01, MBM_1A_W03C-3T-W-4, T-W-3, T-W-1, T-W-5M-1, M-2S-1
MBM_1A_C18_W02
Zdobycie przez studenta podstawowej wiedzy na temat budowy i funkcjonowania robotów przemysłowych.
MBM_1A_W03C-2, C-1T-W-7, T-W-9, T-W-10, T-W-6M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C18_U01
Student potrafi rozwiązać zadanie z zakresu automatyki i robotyki.
MBM_1A_U05, MBM_1A_U09, MBM_1A_U15, MBM_1A_U04C-2, C-3T-L-4, T-L-5, T-L-3, T-L-6, T-L-2, T-L-7, T-L-8M-2S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C18_K01
Student ma świadomość wpływu automatyki i robotyki na procesy produkcyjne oraz wytwarzane w ramach tych procesów wyroby.
MBM_1A_K01, MBM_1A_K02C-1, C-3T-W-1, T-W-6M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C18_W01
Zdobycie uporządkowane wiedzy na temat podstawowych pojęć automatyki, działania układów automatycznej regulacji, podstawowych technik badań i projektowania układów regulacji, projektowanie i analizowanie układów sterowania cyfrowego.
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Nie potrafi kojarzyć i analizować nabytej wiedzy.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Rozumie ograniczenia i zna obszary jej stosowania.
MBM_1A_C18_W02
Zdobycie przez studenta podstawowej wiedzy na temat budowy i funkcjonowania robotów przemysłowych.
2,0Nie spełnia kryteriów na ocenę 3,0.
3,0Zna podstawowe rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne oraz serwomechanizmy stosowane w robotyce. Zna podstawy budowy chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
3,5Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne oraz serwomechanizmy stosowane w robotyce. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
4,0Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
4,5Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
5,0Zna rodzaje robotów przemysłowych - ich cechy charakterystyczne oraz główne elementy budowy. Zna zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C18_U01
Student potrafi rozwiązać zadanie z zakresu automatyki i robotyki.
2,0Nie spełnia kryteriów na ocenę 3,0.
3,0Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki.
3,5Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki. Omówić i przedstawić kolejne etapy realizacji zadania.
4,0Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).
4,5Student potrafi rozwiązać proste zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).
5,0Student potrafi rozwiązać wskazane zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C18_K01
Student ma świadomość wpływu automatyki i robotyki na procesy produkcyjne oraz wytwarzane w ramach tych procesów wyroby.
2,0NIe spełnia kryteriów na ocenę 3,0
3,0Student zna rolę automatyki i robotyki w przemyśle.
3,5Student ma kompetencje w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student ma świadomość roli automatyki i robotyki na funkcjonowanie procesów produkcyjnych.
4,5Student ma kompetencje w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student ma pełną świadomość wpływu automatyki i robotyki na funkcjonowanie procesów produkcyjnych oraz wytwarzanych w wtych procesach wyrobów.

Literatura podstawowa

  1. Kowal J., Podstawy automatyki, Wydawnictwo AGH, Kraków, 2004
  2. Mikulski J., Podstawy automatyki - liniowe układy regulacji, Wydawnictwo Politechniki Śląskiej, Gliwice, 2001
  3. Honczarenko J., Roboty przemysłowe. Budowa i zastosowanie., WNT, Warszawa, 2004
  4. Urbaniak A., Podstawy automatyki, Wydawnictwo Politechniki Poznańskiej, Poznań, 2007
  5. Greblicki W., Podstawy automatyki, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006
  6. A. Markowski, J. Kostro, A. Lewandowski, Automatyka w pytaniach i odpowiedziach, Wydawnictwo Naukowo Techniczne, Warszawa, 1985

Literatura dodatkowa

  1. Morecki A., Knapczyk J., Kędzior K., Teoria mechanizmów i manipulatorów., WNT, Warszawa, 2001
  2. Bodo H., Gerth W., Popp K., Mechatronika - komponenty, metody, przykłady., PWN, Warszawa, 2001
  3. Misiurewicz P., Układy automatyki cyfrowej, Wydaw. Szkolne i Pedagogiczne, Warszawa, 1987
  4. Legierski T., Kasprzyk J., Wyrwał J., Hajda J., Programowanie sterowników PLC., Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 1998

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie do zajęć, omówienie zasad BHP, zapoznanie studentów z planem zajęć i wymaganiami.1
T-L-2Automatyzacja (na przykładzie obrabiarek znajdujących się na hali technologicznej ITM)2
T-L-3Robotyzacja na przykładzie robotów AM80, Fanuc F420S oraz Kuka KR 125.4
T-L-4Efektory robotów przemysłowych, budowa i zastosowanie.2
T-L-5Kinematyka: struktury kinematyczne robotów przemysłowych, zagadnienie kinematyki prostej.2
T-L-6Badanie powtarzalności pozycjonowania robota przemysłowego.2
T-L-7Idea programowania robotów przemysłowych metodą off-line2
T-L-8Sterowanie elementami wykonawczymi, w szczególności napędami elektrycznymi prądu stałego oraz napędami krokowymi.2
T-L-9Przetwarzanie sygnałów sterujących w układach sprzężenia zwrotnego serwonapędów.2
T-L-10Analiza stabilności i jakości układu regulacji na podstawie danych rzeczywistych i przy wykorzystaniu programu Matlab/Simulink4
T-L-11Analiza funkcji przekaźnikowych oraz synteza układów cyfrowych przeprowadzona w programie do symulacji układów.4
T-L-12Analiza i badanie funkcji logicznych zaimplementowanych w sterowniku PLC.2
T-L-13Zaliczenie końcowe1
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.4
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.4
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.4
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.4
T-W-5Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.4
T-W-6Rodzaje robotów - ich cechy charakterystyczne oraz główne elementy składowe.2
T-W-7Kinematyka robotów - wyznaczanie trajektorii. Dynamika robotów.2
T-W-8Napędy, sterowanie pozycyjne, serwomechanizmy.2
T-W-9Chwytaki i ich zastosowania.2
T-W-10Podstawy programowania robotów.2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach30
A-L-2Przygotowanie do zajęć laboratoryjnych na podstawie literatury i instrukcji.6
A-L-3Opracowanie indywidualnych (lub grupowych) sprawozdań laboratoryjnych.5
A-L-4Omówienie i ocena sprawozdań.4
A-L-5Przygotowanie do zaliczenia ćwiczeń laboratoryjnych5
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2Przygotowanie do kolokwium zaliczeniowego.12
A-W-3Praca własna z podręcznikami. Zagadnienia uzupełniające wskazanew czasie zajęć.8
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C18_W01Zdobycie uporządkowane wiedzy na temat podstawowych pojęć automatyki, działania układów automatycznej regulacji, podstawowych technik badań i projektowania układów regulacji, projektowanie i analizowanie układów sterowania cyfrowego.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu i analizy problemów oraz rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
MBM_1A_W03ma podstawową wiedzę z pokrewnych kierunków studiów takich jak: inżynieria materiałowa, automatyka i robotyka, elektrotechnika i elektronika, informatyka, zarządzanie i inżynieria produkcji
Cel przedmiotuC-3Zapoznanie studentów z podstawami automatyki, sterowania i automatycznej regulacji.
Treści programoweT-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.
T-W-5Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.
Metody nauczaniaM-1Wykład informacyjny z elementami konwersatoryjnymi. Wyjaśnienie występujących zjawisk i problemów.
M-2Laboratorium: pokaz i demonstracja, realizacja przez studentów ćwiczeń laboratoryjnych.
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie w formie pisemnej lub ustnej obejmujące zagadnienia realizowane w trzkcie zajęć laboratoryjnych i wykładowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Nie potrafi kojarzyć i analizować nabytej wiedzy.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student opanował podstawową wiedzę z zakresu podstaw automatyki. Rozumie ograniczenia i zna obszary jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C18_W02Zdobycie przez studenta podstawowej wiedzy na temat budowy i funkcjonowania robotów przemysłowych.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_W03ma podstawową wiedzę z pokrewnych kierunków studiów takich jak: inżynieria materiałowa, automatyka i robotyka, elektrotechnika i elektronika, informatyka, zarządzanie i inżynieria produkcji
Cel przedmiotuC-2Zapoznanie z budową i sterowaniem robotów przemysłowych.
C-1Zapoznanie studentów z istotą robotyzacji oraz przesłankami stymulującymi rozwój robotyzacji.
Treści programoweT-W-7Kinematyka robotów - wyznaczanie trajektorii. Dynamika robotów.
T-W-9Chwytaki i ich zastosowania.
T-W-10Podstawy programowania robotów.
T-W-6Rodzaje robotów - ich cechy charakterystyczne oraz główne elementy składowe.
Metody nauczaniaM-1Wykład informacyjny z elementami konwersatoryjnymi. Wyjaśnienie występujących zjawisk i problemów.
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie w formie pisemnej lub ustnej obejmujące zagadnienia realizowane w trzkcie zajęć laboratoryjnych i wykładowych.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia kryteriów na ocenę 3,0.
3,0Zna podstawowe rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne oraz serwomechanizmy stosowane w robotyce. Zna podstawy budowy chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
3,5Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne oraz serwomechanizmy stosowane w robotyce. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
4,0Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna podstawowe zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
4,5Zna rodzaje robotów przemysłowych - ich głowne cechy charakterystyczne oraz główne elementy budowy. Zna zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych metodą off line.
5,0Zna rodzaje robotów przemysłowych - ich cechy charakterystyczne oraz główne elementy budowy. Zna zagadnienie kinematyki i dynamiki robotów. Zna napędy, sterowanie pozycyjne, serwomechanizmy stosowane w robotyce, ich budowę i zasadę działąnia. Zna budowę chwytaków i ich zastosowania. Zna podstawy programowania robotów przemysłowych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C18_U01Student potrafi rozwiązać zadanie z zakresu automatyki i robotyki.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_U05ma umiejętność samokształcenia - samodzielnego poszukiwania informacji i analizowania poznanych zagadnień
MBM_1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
MBM_1A_U15potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla obszaru inżynierii mechanicznej
MBM_1A_U04potrafi przygotować w języku polskim lub obcym prezentację ustną z zakresu inżynierii mechanicznej posługując się słownictwem technicznym
Cel przedmiotuC-2Zapoznanie z budową i sterowaniem robotów przemysłowych.
C-3Zapoznanie studentów z podstawami automatyki, sterowania i automatycznej regulacji.
Treści programoweT-L-4Efektory robotów przemysłowych, budowa i zastosowanie.
T-L-5Kinematyka: struktury kinematyczne robotów przemysłowych, zagadnienie kinematyki prostej.
T-L-3Robotyzacja na przykładzie robotów AM80, Fanuc F420S oraz Kuka KR 125.
T-L-6Badanie powtarzalności pozycjonowania robota przemysłowego.
T-L-2Automatyzacja (na przykładzie obrabiarek znajdujących się na hali technologicznej ITM)
T-L-7Idea programowania robotów przemysłowych metodą off-line
T-L-8Sterowanie elementami wykonawczymi, w szczególności napędami elektrycznymi prądu stałego oraz napędami krokowymi.
Metody nauczaniaM-2Laboratorium: pokaz i demonstracja, realizacja przez studentów ćwiczeń laboratoryjnych.
Sposób ocenyS-2Ocena formująca: Ocena wybranych osiągnięć studenta realizowana w trakcie wprowadzenia do zajęć laboratoryjnych lub w trakcie ich trwania.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia kryteriów na ocenę 3,0.
3,0Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki.
3,5Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki. Omówić i przedstawić kolejne etapy realizacji zadania.
4,0Student potrafi rozwiązać typowe zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).
4,5Student potrafi rozwiązać proste zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).
5,0Student potrafi rozwiązać wskazane zadanie z zakresu podstaw automatyki i robotyki. mówić i przedstawić kolejne etapy realizacji zadania oraz alternatywne metody rozwiązania zadania (jeśli występują).
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C18_K01Student ma świadomość wpływu automatyki i robotyki na procesy produkcyjne oraz wytwarzane w ramach tych procesów wyroby.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
MBM_1A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Zapoznanie studentów z istotą robotyzacji oraz przesłankami stymulującymi rozwój robotyzacji.
C-3Zapoznanie studentów z podstawami automatyki, sterowania i automatycznej regulacji.
Treści programoweT-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.
T-W-6Rodzaje robotów - ich cechy charakterystyczne oraz główne elementy składowe.
Metody nauczaniaM-1Wykład informacyjny z elementami konwersatoryjnymi. Wyjaśnienie występujących zjawisk i problemów.
M-2Laboratorium: pokaz i demonstracja, realizacja przez studentów ćwiczeń laboratoryjnych.
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie w formie pisemnej lub ustnej obejmujące zagadnienia realizowane w trzkcie zajęć laboratoryjnych i wykładowych.
S-2Ocena formująca: Ocena wybranych osiągnięć studenta realizowana w trakcie wprowadzenia do zajęć laboratoryjnych lub w trakcie ich trwania.
Kryteria ocenyOcenaKryterium oceny
2,0NIe spełnia kryteriów na ocenę 3,0
3,0Student zna rolę automatyki i robotyki w przemyśle.
3,5Student ma kompetencje w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student ma świadomość roli automatyki i robotyki na funkcjonowanie procesów produkcyjnych.
4,5Student ma kompetencje w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student ma pełną świadomość wpływu automatyki i robotyki na funkcjonowanie procesów produkcyjnych oraz wytwarzanych w wtych procesach wyrobów.