Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Nanotechnologia (S1)
specjalność: Nanomateriały funkcjonalne

Sylabus przedmiotu Elementy automatyki i pomiary w nanotechnologii:

Informacje podstawowe

Kierunek studiów Nanotechnologia
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Elementy automatyki i pomiary w nanotechnologii
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Materiałów Katalitycznych i Sorpcyjnych
Nauczyciel odpowiedzialny Beata Michalkiewicz <Beata.Michalkiewicz@zut.edu.pl>
Inni nauczyciele Krzysztof Lubkowski <Krzysztof.Lubkowski@zut.edu.pl>, Dariusz Moszyński <Dariusz.Moszynski@zut.edu.pl>, Joanna Sreńscek-Nazzal <Joanna.Srenscek@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW4 30 2,00,62zaliczenie
laboratoriaL4 45 3,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka I i II
W-2Fizyka I i II

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z problemami metrologii i automatyki
C-2Ukształtowanie umiejętności doboru odpowiednich przyrządów pomiarowych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zajęcia organizacyjne, regulamin BHP3
T-L-2Pomiary temperatury3
T-L-3Pomiary przepływów i ciśnień3
T-L-4Analiza niepewności pomiarów na przykładzie różnych metod pomiaru gęstości3
T-L-5Wykorzystanie statystycznej analizy pomiarów na podstawie zdjęć TEM nanorurek węglowych3
T-L-6Doświadczalna optymalizacja procesów nanotechnologicznych wykorzystująca simpleksową metodę planowania doświadczeń3
T-L-7Wyznaczanie charakterystyk statycznych i dynamicznych obiektów automatyki6
T-L-8Badanie wpływu nastaw na pracę układu regulacji3
T-L-9Dobór nastaw regulatora: procedur Zieglera-Nicholsa, metoda Cohena-Coona3
T-L-10Metody badania stabilności układów regulacji automatycznej3
T-L-11Badania symulacyjne w środowisku Matlab-Simulink9
T-L-12Końcowe zaliczenie przedmiotu3
45
wykłady
T-W-1Pomiary wielkości fizycznych4
T-W-2Opracowanie wyników doświadczeń i ich planowanie4
T-W-3Urządzenia pomiarowe (pomiary temperatury, ciśnienia, poziomu cieczy, prędkości i przepływu płynów)6
T-W-4Dobór odpowiedniego urządzenia pomiarowego2
T-W-5Modele matematyczne i równania stanu2
T-W-6Elementy automatyki charakterystyki statyczne1
T-W-7Transformata Laplace'a1
T-W-8Elementy automatyki charakterystyki dynamiczne4
T-W-9Zamknięty układ regulacji2
T-W-10Stabilność układu2
T-W-11Klasyfikacja regulatorów2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Wykonanie sprawozdania25
A-L-2Przygotowanie do zaliczenia20
A-L-3uczestnictwo w zajęciach45
90
wykłady
A-W-1Czytanie wskazanej literatury10
A-W-2Przygotowanie do zaliczenia20
A-W-3uczestnictwo w zajęciach30
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: ocena sprawozdań z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: ocena sprawozdań i zaliczeń pisemnych z ćwiczeń laboratoryjnych
S-3Ocena formująca: ocena aktywności na zajęciach
S-4Ocena podsumowująca: zaliczenie z wykładów
S-5Ocena formująca: sprawdzian z wiedzy dotyczącej każdego z ćwiczeń laboratoryjnych
S-6Ocena formująca: ocena postępów
S-7Ocena formująca: ocena aktywności na zajęciach

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Nano_1A_C06_W01
zna podstawowe problemy z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
Nano_1A_W03C-1T-W-5, T-W-1, T-W-3, T-W-4, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-L-8, T-L-9, T-L-10, T-L-7, T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-11, T-L-12M-1, M-2S-2, S-4, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Nano_1A_C06_U02
dobiera odpowiednie techniki pomiaru oraz aparatury dla przeprowadzenia badań laboratoryjnych oraz dokonuje krytycznej analizy sposobów ich wykorzystania i ocenia istniejące rozwiązania techniczne
Nano_1A_U10, Nano_1A_U14C-2T-W-4, T-L-8, T-L-9, T-L-10M-1, M-2S-2, S-3, S-4, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
Nano_1A_C06_W01
zna podstawowe problemy z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
2,0nie potrafi wcale objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
3,0w co najmniej 51% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
3,5w co najmniej 61% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
4,0w co najmniej 71% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
4,5w co najmniej 81% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
5,0w co najmniej 91% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
Nano_1A_C06_U02
dobiera odpowiednie techniki pomiaru oraz aparatury dla przeprowadzenia badań laboratoryjnych oraz dokonuje krytycznej analizy sposobów ich wykorzystania i ocenia istniejące rozwiązania techniczne
2,0
3,0w co najmniej 51% potrafi dobiera odpowiednie techniki pomiaru oraz aparatury dla przeprowadzenia badań laboratoryjnych oraz dokonuje krytycznej analizy sposobów ich wykorzystania i ocenia istniejące rozwiązania techniczne
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. praca zbiorowa, Aparatura kontrolno-pomiarowa w przemyśle chemicznym, WSiP, Warszawa, 1993
  2. Trybalski Z, Zasady automatyki dla chemików, PWN, Łodź, 1990

Literatura dodatkowa

  1. Peszyński K, Pomiary i automatyka dla chemików, Wyd. Uczeln. ATR, Bydgoszcz, 1998
  2. Węgrzyn S, Podstawy automatyki, PWN, Warszawa, 1974
  3. Żelazny M, Podstawy automatyki, PWN, Warszawa, 1976
  4. Markowski A., Kostro J., Lewandowski A, Automatyka w pytaniach i odpowiedziach, WNT, Warszawa, 1985

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zajęcia organizacyjne, regulamin BHP3
T-L-2Pomiary temperatury3
T-L-3Pomiary przepływów i ciśnień3
T-L-4Analiza niepewności pomiarów na przykładzie różnych metod pomiaru gęstości3
T-L-5Wykorzystanie statystycznej analizy pomiarów na podstawie zdjęć TEM nanorurek węglowych3
T-L-6Doświadczalna optymalizacja procesów nanotechnologicznych wykorzystująca simpleksową metodę planowania doświadczeń3
T-L-7Wyznaczanie charakterystyk statycznych i dynamicznych obiektów automatyki6
T-L-8Badanie wpływu nastaw na pracę układu regulacji3
T-L-9Dobór nastaw regulatora: procedur Zieglera-Nicholsa, metoda Cohena-Coona3
T-L-10Metody badania stabilności układów regulacji automatycznej3
T-L-11Badania symulacyjne w środowisku Matlab-Simulink9
T-L-12Końcowe zaliczenie przedmiotu3
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Pomiary wielkości fizycznych4
T-W-2Opracowanie wyników doświadczeń i ich planowanie4
T-W-3Urządzenia pomiarowe (pomiary temperatury, ciśnienia, poziomu cieczy, prędkości i przepływu płynów)6
T-W-4Dobór odpowiedniego urządzenia pomiarowego2
T-W-5Modele matematyczne i równania stanu2
T-W-6Elementy automatyki charakterystyki statyczne1
T-W-7Transformata Laplace'a1
T-W-8Elementy automatyki charakterystyki dynamiczne4
T-W-9Zamknięty układ regulacji2
T-W-10Stabilność układu2
T-W-11Klasyfikacja regulatorów2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Wykonanie sprawozdania25
A-L-2Przygotowanie do zaliczenia20
A-L-3uczestnictwo w zajęciach45
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Czytanie wskazanej literatury10
A-W-2Przygotowanie do zaliczenia20
A-W-3uczestnictwo w zajęciach30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięNano_1A_C06_W01zna podstawowe problemy z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
Odniesienie do efektów kształcenia dla kierunku studiówNano_1A_W03ma podstawową wiedzę w zakresie elektrotechniki, elektroniki i metrologii niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
Cel przedmiotuC-1Zapoznanie studentów z problemami metrologii i automatyki
Treści programoweT-W-5Modele matematyczne i równania stanu
T-W-1Pomiary wielkości fizycznych
T-W-3Urządzenia pomiarowe (pomiary temperatury, ciśnienia, poziomu cieczy, prędkości i przepływu płynów)
T-W-4Dobór odpowiedniego urządzenia pomiarowego
T-W-6Elementy automatyki charakterystyki statyczne
T-W-7Transformata Laplace'a
T-W-8Elementy automatyki charakterystyki dynamiczne
T-W-9Zamknięty układ regulacji
T-W-10Stabilność układu
T-W-11Klasyfikacja regulatorów
T-L-8Badanie wpływu nastaw na pracę układu regulacji
T-L-9Dobór nastaw regulatora: procedur Zieglera-Nicholsa, metoda Cohena-Coona
T-L-10Metody badania stabilności układów regulacji automatycznej
T-L-7Wyznaczanie charakterystyk statycznych i dynamicznych obiektów automatyki
T-L-1Zajęcia organizacyjne, regulamin BHP
T-L-2Pomiary temperatury
T-L-3Pomiary przepływów i ciśnień
T-L-4Analiza niepewności pomiarów na przykładzie różnych metod pomiaru gęstości
T-L-5Wykorzystanie statystycznej analizy pomiarów na podstawie zdjęć TEM nanorurek węglowych
T-L-6Doświadczalna optymalizacja procesów nanotechnologicznych wykorzystująca simpleksową metodę planowania doświadczeń
T-L-11Badania symulacyjne w środowisku Matlab-Simulink
T-L-12Końcowe zaliczenie przedmiotu
Metody nauczaniaM-1Wykład informacyjny
M-2Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena podsumowująca: ocena sprawozdań i zaliczeń pisemnych z ćwiczeń laboratoryjnych
S-4Ocena podsumowująca: zaliczenie z wykładów
S-1Ocena formująca: ocena sprawozdań z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0nie potrafi wcale objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
3,0w co najmniej 51% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
3,5w co najmniej 61% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
4,0w co najmniej 71% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
4,5w co najmniej 81% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
5,0w co najmniej 91% potrafi objaśnić podstawowych problemów z zakresu zakresie metrologii i automatyki niezbędną do formułowania i rozwiązywania prostych zagadnień w technice i nanotechnologii
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięNano_1A_C06_U02dobiera odpowiednie techniki pomiaru oraz aparatury dla przeprowadzenia badań laboratoryjnych oraz dokonuje krytycznej analizy sposobów ich wykorzystania i ocenia istniejące rozwiązania techniczne
Odniesienie do efektów kształcenia dla kierunku studiówNano_1A_U10potrafi dokonać doboru metod analitycznych i aparatury właściwych dla przeprowadzenia badań laboratoryjnych oraz dokonać krytycznej analizy sposobów ich wykorzystania i ocenić istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
Nano_1A_U14potrafi oznaczać właściwości fizyczne i chemiczne związków chemicznych i materiałów, w szczególności nanomateriałów przy wykorzystaniu odpowiednich technik badawczych
Cel przedmiotuC-2Ukształtowanie umiejętności doboru odpowiednich przyrządów pomiarowych
Treści programoweT-W-4Dobór odpowiedniego urządzenia pomiarowego
T-L-8Badanie wpływu nastaw na pracę układu regulacji
T-L-9Dobór nastaw regulatora: procedur Zieglera-Nicholsa, metoda Cohena-Coona
T-L-10Metody badania stabilności układów regulacji automatycznej
Metody nauczaniaM-1Wykład informacyjny
M-2Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena podsumowująca: ocena sprawozdań i zaliczeń pisemnych z ćwiczeń laboratoryjnych
S-3Ocena formująca: ocena aktywności na zajęciach
S-4Ocena podsumowująca: zaliczenie z wykładów
S-1Ocena formująca: ocena sprawozdań z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0w co najmniej 51% potrafi dobiera odpowiednie techniki pomiaru oraz aparatury dla przeprowadzenia badań laboratoryjnych oraz dokonuje krytycznej analizy sposobów ich wykorzystania i ocenia istniejące rozwiązania techniczne
3,5
4,0
4,5
5,0