Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria transportu (N2)
specjalność: urządzenia mechatroniczne w transporcie samochodowym
Sylabus przedmiotu Mechanika analityczna:
Informacje podstawowe
Kierunek studiów | Inżynieria transportu | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Mechanika analityczna | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Mechaniki | ||
Nauczyciel odpowiedzialny | Kamil Urbanowicz <Kamil.Urbanowicz@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza i umiejętności z matematyki, w tym podstawy rachunku różniczkowego i całkowego. |
W-2 | Wiedza i umiejętności z zakresu mechaniki ogólnej wykładanej na studiach stopnia pierwszego. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z wybranymi zagadnieniami mechaniki analitycznej. |
C-2 | Zapoznanie studentów z metodami analizy matematycznej wykorzystywanymi przy rozwiazywaniu zadań mechaniki ogólnej. |
C-3 | Ukształtowanie umiejętności obliczania liniowych prędkości i przyspieszeń punktów brył oraz kątowych prędkości i przyspieszeń brył. |
C-4 | Ukształtowanie umiejętności obliczania momentów bezwładności brył i energii kinetycznej brył w ruch postępowym, obrotowym, płaskim i kulistym oraz energii potencjalnej układów mechanicznych. |
C-5 | Ukształtowanie umiejętności wyznaczania układów rózniczkowych równań róchu, obliczania częstotliwości drgań swobodnych i postaci drgań. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Obliczanie momentów bezwładności i odśrodkowych brył. | 2 |
T-A-2 | Wyznaczanie prędkości i przyspieszeń punktów brył w ruchu: postępowym, obrotowym, płaskim i kulistym. | 3 |
T-A-3 | Kolokwium 1. | 1 |
T-A-4 | Zastosowanie zasady Lagrange'a-d'Lamberta do rozwiazywania zadań dynamiki układów mechanicznych. | 2 |
T-A-5 | Obliczanie energii kinetycznej i potencjalnej układów mechanicznych. | 2 |
T-A-6 | Zastosowanie równania Lagrange'a drugiego rodzaju do wyznaczania różniczkowych równań ruchu. | 2 |
T-A-7 | Obliczanie częstotliwości drgań swobodnych i postaci drgań. | 2 |
T-A-8 | Kolokwium 2. | 1 |
15 | ||
wykłady | ||
T-W-1 | Wprowadzenie do mechaniki analitycznej. Geometria mas: momenty bezwładności i odśrodkowe brył, masa zredukowana, promień bezwładności, twierdzenie Steinera, główne osie bezwładności, tensor bezwładności. | 2 |
T-W-2 | Kinematyka bryły w ruchu: postępowym, obrotowym dookoła stałej osi, płaskim, kulistym i złożonym. | 3 |
T-W-3 | Przybliżona teoria zjawisk żyroskopowych. | 1 |
T-W-4 | Mechanika Lagrange'a: klasyfikacja więzów i rodzaje sił, przesunięcia przygotowane, współrzędne i siły uogólnione i zasada d'Alemberta-Lagrange'a. | 2 |
T-W-5 | Energia kinetyczna i potencjalna układu mechanicznego. | 2 |
T-W-6 | Równanie Lagrange'a drugiego rodzaju dla układów zachowawczych i niezachowawczych. | 2 |
T-W-7 | Drgania układów mechanicznych o dwóch i większej liczbie stopni swobody: częstotliwości drgań swobodnych, postacie drgań, charakterystyki rezonansowe. | 3 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestniczenie w ćwiczeniach. | 15 |
A-A-2 | Rozwiązywanie zadań ze wskazanych zbiorów zadań. | 5 |
A-A-3 | Przygotowanie się do kolokwiów. | 5 |
A-A-4 | Konsultacje. | 1 |
26 | ||
wykłady | ||
A-W-1 | Uczestniczenie w wykładach. | 15 |
A-W-2 | Przygotowanie się do egzaminu. | 10 |
A-W-3 | Konsultacje. | 1 |
26 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny. |
M-2 | Ćwiczenia problemowe. |
M-3 | Objaśnienia. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Na podstawie identyfikacji poziomu wiedzy i umiejętności, prowadzonej w czasie trwania ćwiczeń audytoryjnych. |
S-2 | Ocena formująca: Na podstawie sprawdzianów. |
S-3 | Ocena podsumowująca: Na podstawie wyników kolokwiów. |
S-4 | Ocena podsumowująca: Na podstawie egzaminu pisemnego i ustnego. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IT_2A_B01_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie: - wymienić i objaśnić podstawowe pojęcia z zakresu mechaniki analitycznej, poznanego na wykładach, - nazwać i definiować podstawowe wielkości mechanik analitycznej, - omówić poznane zasady (prawa) z zakresu mechaniki analitycznej, - rozpoznawać układy mechaniczne i rodzaje ruchu brył tworzacych układ, - zaproponować sposób (sposoby) wyznaczania predkości i przyspieszeń punktów brył, momentów bezwładności brył, energii potencjalnej i kinetycznej układów mechanicznych, - zaproponować sposób (sposoby) wyznaczania różniczkowych równań ruchu, obliczenia częstotliwości drgań swobodnych i postaci drgań. | — | — | — | C-2, C-1 | T-W-4, T-W-3, T-W-1, T-W-7, T-W-2, T-W-6, T-W-5 | M-1 | S-4 |
IT_2A_B01_W02 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę niezbędną do opisu i analizy kinematyki i dynamiki układów materialnych. W szczególności powinien być w stanie opisać ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego oraz ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Powinien umieć zdefiniować takie pojęcia, jak pęd i kręt punktu i układu punktów materialnych. Powinien być w stanie zdefiniować dynamiczne równania Eulera i równania dynamiczne dla ogólnego przypadku ruchu ciała sztywnego. Powinien umieć wyjaśnić pojęcie więzów i dokonać ich klasyfikacji. Powinien umieć zdefiniować zasadę prac przygotowanych i zasadę d'Alemberta oraz opisać równania Lagrange'a II rodzaju. | IT_2A_W05, IT_2A_W10, IT_2A_W01 | — | — | — | — | — | — |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IT_2A_B01_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizę kinematyki i dynamiki układów materialnych. W szczególności powinien być w stanie napisać dynamiczne równania ruchu obrotowego, ruchu płaskiego i ruchu kulistego ciała sztywnego. Powinien umieć dokonać analizy ruchu złożonego punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Powinien umieć wyznaczyć dynamiczne reakcje łożysk w ruchu obrotowym. Powinien umieć wykorzystać praktycznie zasadę prac przygotowanych. Powinien umieć wykorzystać równania Lagrange'a II rodzaju do wyznaczenia dynamicznych równań ruchu układów o jednym i wielu stopniach swobody. | IT_2A_U05, IT_2A_U09 | — | — | C-5, C-3, C-4 | T-W-4, T-W-3, T-W-1, T-W-7, T-W-2, T-W-6, T-W-5, T-A-5, T-A-1, T-A-7, T-A-2, T-A-6, T-A-4, T-A-3, T-A-8 | M-1, M-2 | S-1, S-3, S-2, S-4 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IT_2A_B01_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: - świadomość ważności wiedzy z zakresu mechaniki analitycznej dla procesu projektowania elementów maszyn i konstrukcji, - świadomość w wyborze odpowiednich metod rozwiązywania zadań mechaniki analitycznej, - dbałość o poprawność wykonywanych działań, - zdolność do oceny otrzymywanych wyników, - zorientowanie na ciągłe poszerzanie własnej wiedzy i umiejętności. | — | — | — | C-3, C-4, C-1 | T-W-4, T-W-3, T-W-1, T-W-7, T-W-2, T-W-6, T-W-5, T-A-5, T-A-1, T-A-7, T-A-2, T-A-6, T-A-4 | M-3, M-1, M-2 | S-1 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IT_2A_B01_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie: - wymienić i objaśnić podstawowe pojęcia z zakresu mechaniki analitycznej, poznanego na wykładach, - nazwać i definiować podstawowe wielkości mechanik analitycznej, - omówić poznane zasady (prawa) z zakresu mechaniki analitycznej, - rozpoznawać układy mechaniczne i rodzaje ruchu brył tworzacych układ, - zaproponować sposób (sposoby) wyznaczania predkości i przyspieszeń punktów brył, momentów bezwładności brył, energii potencjalnej i kinetycznej układów mechanicznych, - zaproponować sposób (sposoby) wyznaczania różniczkowych równań ruchu, obliczenia częstotliwości drgań swobodnych i postaci drgań. | 2,0 | Student nie zna podstawowych pojęć, wielkości i praw mechaniki analitycznej, nie umie zaproponować podstawowych narzędzi do rozwiazywania zadań. |
3,0 | Student zna większość pojęć, wielkości i praw mechaniki analitycznej, proponuje poprawnie tylko niektóre narzędzia do rozwiązywania zadań. | |
3,5 | Student zna pojęcia, wielkości i prawa mechaniki analitycznej, proponuje poprawnie wszystkie poznane narzędzia do rozwiązywania zadań. | |
4,0 | Student zna pojęcia, wielkości i prawa mechaniki analitycznej, proponuje poprawnie i optymalnie wszystkie poznane narzędzia do rozwiązywania zadań. | |
4,5 | Student zna pojęcia, wielkości i prawa mechaniki analitycznej, proponuje poprawnie i optymalnie wszystkie poznane narzędzia do rozwiązywania zadań, potrafi zaproponować sposób jak przeprowadzić dyskusję wyników. | |
5,0 | Student zna pojęcia, wielkości i prawa mechaniki analitycznej, proponuje poprawnie i optymalnie wszystkie poznane narzędzia do rozwiązywania zadań z jednoczesnym uzasadnieniem wyboru, potrafi zaproponować sposób jak przeprowadzić dyskusję wyników. | |
IT_2A_B01_W02 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę niezbędną do opisu i analizy kinematyki i dynamiki układów materialnych. W szczególności powinien być w stanie opisać ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego oraz ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Powinien umieć zdefiniować takie pojęcia, jak pęd i kręt punktu i układu punktów materialnych. Powinien być w stanie zdefiniować dynamiczne równania Eulera i równania dynamiczne dla ogólnego przypadku ruchu ciała sztywnego. Powinien umieć wyjaśnić pojęcie więzów i dokonać ich klasyfikacji. Powinien umieć zdefiniować zasadę prac przygotowanych i zasadę d'Alemberta oraz opisać równania Lagrange'a II rodzaju. | 2,0 | - Student nie jest w stanie zdefiniować wielkości charakteryzujących ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego. - Nie jest w stanie opisać ruchu złożonego punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. - Nie potrafi zdefiniować takich pojęć, jak: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Nie potrafi zdefiniować i objaśnić zasady zachowania energii mechanicznej. - Nie potrafi zdefiniować dynamicznych równań Eulera. - Nie potrafi zdefiniować równań dynamicznych dla ogólnego przypadku ruchu ciała sztywnego. - Nie jest w stanie zdefiniować takich pojęć, jak: więzy i przesunięcie przygotowane.. - Nie jest w stanie opisać zasady prac przygotowanych. - Nie jest w stanie opisać zasady d'Alemberta. - Nie jest w stanie opisać równań Lagrange'a II rodzaju. |
3,0 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej. - Potrafi zdefiniować dynamiczne równania Eulera. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Jest w stanie opisać równania Lagrange'a II rodzaju. | |
3,5 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego i opisać zależności zachodzące między tymi wielkościami. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Jest w stanie szczegółowo wyjaśnić warunki wystąpienia przyspieszenia Coriolisa. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi szczegółowo opisać zasadę zachowania pędu i zasadę zachowania krętu i zilustrować te zasady własnymi przykładami. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej i podać przykłady wykorzystania tej zasady.. - Potrafi zdefiniować dynamiczne równania Eulera i podać przykład ich wykorzystania. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała. sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie dokonać klasyfikacji więzów. - Jest w stanie zdefiniować przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Jest w stanie opisać równania Lagrange'a II rodzaju. Potrafi opisać te równania dla sił potencjalnych i niepotencjalnych. | |
4,0 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego i opisać zależności zachodzące między tymi wielkościami. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Jest w stanie szczegółowo wyjaśnić warunki wystąpienia przyspieszenia Coriolisa. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi szczegółowo opisać zasadę zachowania pędu i zasadę zachowania krętu i zilustrować te zasady własnymi przykładami. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej i podać przykłady wykorzystania tej zasady.. - Potrafi zdefiniować dynamiczne równania Eulera i podać przykład ich wykorzystania. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała. sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie dokonać klasyfikacji więzów. - Jest w stanie zdefiniować przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Potrafi zdefiniować ogólne równanie dynamiki analitycznej. - Jest w stanie opisać równania Lagrange'a II rodzaju. Potrafi opisać te równania dla sił potencjalnych i niepotencjalnych. - Jest w stanie opisać ogólnie zjawiska żyroskopowe. | |
4,5 | - Student spełnia wymagania jak na ocenę 4.0 oraz dodatkowo potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania, a tam, gdzie jest to możliwe potrafi zaproponować rozwiązanie alternatywne. | |
5,0 | - Student spełnia wymagania jak na ocenę 4.5 oraz dodatkowo potrafi przeprowadzić dyskusję na temat zagadnień objętych programem nauczania w ramach przedmiotu "Mechanika analityczna" i potrafi wskazać możliwości praktycznego wykorzystania wiedzy i umiejętności zdobytych w trakcie odbytego kursu. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IT_2A_B01_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizę kinematyki i dynamiki układów materialnych. W szczególności powinien być w stanie napisać dynamiczne równania ruchu obrotowego, ruchu płaskiego i ruchu kulistego ciała sztywnego. Powinien umieć dokonać analizy ruchu złożonego punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Powinien umieć wyznaczyć dynamiczne reakcje łożysk w ruchu obrotowym. Powinien umieć wykorzystać praktycznie zasadę prac przygotowanych. Powinien umieć wykorzystać równania Lagrange'a II rodzaju do wyznaczenia dynamicznych równań ruchu układów o jednym i wielu stopniach swobody. | 2,0 | - Student nie jest w stanie zdefiniować wielkości charakteryzujących ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego. - Nie jest w stanie opisać ruchu złożonego punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. - Nie potrafi zdefiniować takich pojęć, jak: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Nie potrafi zdefiniować i objaśnić zasady zachowania energii mechanicznej. - Nie potrafi zdefiniować dynamicznych równań Eulera. - Nie potrafi zdefiniować równań dynamicznych dla ogólnego przypadku ruchu ciała sztywnego. - Nie jest w stanie zdefiniować takich pojęć, jak: więzy i przesunięcie przygotowane.. - Nie jest w stanie opisać zasady prac przygotowanych. - Nie jest w stanie opisać zasady d'Alemberta. - Nie jest w stanie opisać równań Lagrange'a II rodzaju. |
3,0 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej. - Potrafi zdefiniować dynamiczne równania Eulera. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Jest w stanie opisać równania Lagrange'a II rodzaju. | |
3,5 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego i opisać zależności zachodzące między tymi wielkościami. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Jest w stanie szczegółowo wyjaśnić warunki wystąpienia przyspieszenia Coriolisa. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi szczegółowo opisać zasadę zachowania pędu i zasadę zachowania krętu i zilustrować te zasady własnymi przykładami. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej i podać przykłady wykorzystania tej zasady.. - Potrafi zdefiniować dynamiczne równania Eulera i podać przykład ich wykorzystania. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała. sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie dokonać klasyfikacji więzów. - Jest w stanie zdefiniować przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Jest w stanie opisać równania Lagrange'a II rodzaju. Potrafi opisać te równania dla sił potencjalnych i niepotencjalnych. | |
4,0 | - Student jest w stanie zdefiniować wielkości charakteryzujące ruch obrotowy, ruch płaski i ruch kulisty ciała sztywnego i opisać zależności zachodzące między tymi wielkościami. - Jest w stanie opisać ruch złożony punktu i dokonać składania prędkości i przyspieszeń w tym ruchu. Jest w stanie szczegółowo wyjaśnić warunki wystąpienia przyspieszenia Coriolisa. - Potrafi zdefiniować takie pojęcia, jak:: pęd i kręt punktu oraz pęd i kręt układu punktów materialnych. - Potrafi szczegółowo opisać zasadę zachowania pędu i zasadę zachowania krętu i zilustrować te zasady własnymi przykładami. - Potrafi zdefiniować i objaśnić zasadę zachowania energii mechanicznej i podać przykłady wykorzystania tej zasady.. - Potrafi zdefiniować dynamiczne równania Eulera i podać przykład ich wykorzystania. - Potrafi zdefiniować równania dynamiczne dla ogólnego przypadku ruchu ciała. sztywnego. - Jest w stanie zdefiniować takie pojęcia, jak: więzy i przesunięcie przygotowane. - Jest w stanie dokonać klasyfikacji więzów. - Jest w stanie zdefiniować przesunięcie przygotowane. - Jest w stanie opisać zasadę prac przygotowanych. - Jest w stanie opisać zasadę d'Alemberta. - Potrafi zdefiniować ogólne równanie dynamiki analitycznej. - Jest w stanie opisać równania Lagrange'a II rodzaju. Potrafi opisać te równania dla sił potencjalnych i niepotencjalnych. | |
4,5 | - Student spełnia wymagania jak na ocenę 4.0 oraz dodatkowo potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania, a tam, gdzie jest to możliwe potrafi zaproponować rozwiązanie alternatywne. | |
5,0 | - Student spełnia wymagania jak na ocenę 4.5 oraz dodatkowo potrafi przeprowadzić dyskusję na temat zagadnień objętych programem nauczania w ramach przedmiotu "Mechanika analityczna" i potrafi wskazać możliwości praktycznego wykorzystania wiedzy i umiejętności zdobytych w trakcie odbytego kursu. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IT_2A_B01_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: - świadomość ważności wiedzy z zakresu mechaniki analitycznej dla procesu projektowania elementów maszyn i konstrukcji, - świadomość w wyborze odpowiednich metod rozwiązywania zadań mechaniki analitycznej, - dbałość o poprawność wykonywanych działań, - zdolność do oceny otrzymywanych wyników, - zorientowanie na ciągłe poszerzanie własnej wiedzy i umiejętności. | 2,0 | Student nie ma świadomości ważności wiedzy z zakresu mechaniki analitycznej dla procesu projektowania maszyn. |
3,0 | Student ma świadomość ważności wiedzy z zakresu mechaniki analitycznej dla procesu projektowania maszyn oraz świadomość znaczenia wyboru odpowiednich metod rozwiazywania zadań. | |
3,5 | Student spełnia wymagania na ocenę 3,0 i dodatkowo wykazuje dbałość o poprawność wykonywanych działań. | |
4,0 | Student spełnia wymagania na ocenę 3,5 i dodatkowo wykazuje zdolność do oceny otrzymywanych wyników. | |
4,5 | Student spełnia wymagania na ocenę 4,0 i dodatkowo wykazuje otwartośc na współpracę w zespołach. | |
5,0 | Student spełnia wymagania na ocenę 4,5 i dodatkowo jest zorientowany na ciągłe podnoszenie własnej wiedzy i umiejętności |
Literatura podstawowa
- Gutowski R., Mechanika analityczna, PWN, Warszawa, 1971, i wydania późniejsze
- Leyko J., Mechanika ogólna, t.1, Statyka i kinematyka. t. 2 Dynamika, PWN, Wzrszawa, 2010, i wydania późniejsze
Literatura dodatkowa
- Cannon jr. R.H., Dynamika układów fizycznych., WNT, 1973, i wydania późniejsze
- Nizioł J., Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa, 2009, i wydania późniejsze
- Marchelek K., Berczyński S., Drgania mechaniczne. Zbiór zadań z rozwiązaniami., WUPS, Szczecin, 1986, i wydania późniejsze
- Niezgodziński M.E, niezgodziński T., Zbiór zadań z mechaniki ogólnej., PWN, Warszawa, 2009, i wydania późniejsze