Wydział Inżynierii Mechanicznej i Mechatroniki - Mechatronika (N2)
Sylabus przedmiotu Metody sztucznej inteligencji:
Informacje podstawowe
Kierunek studiów | Mechatronika | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Metody sztucznej inteligencji | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Automatyki i Robotyki | ||
Nauczyciel odpowiedzialny | Krzysztof Jaroszewski <Krzysztof.Jaroszewski@zut.edu.pl> | ||
Inni nauczyciele | Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl> | ||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza: matematyka, metody numeryczne, struktury danych i algorytmów |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zdobycie widzy dotyczącej stosowanych w praktyce inżynierskiej metod ze sztucznej inteligencji. Umiejętność rozpoznania problemu i skojarzenie z możliwą do rozwiązania problemu metodą. |
C-2 | Zdobycie umiejętności praktycznej analizy szerokiego spektrum problemów rozwiązywanych metodami sztucznej inteligencji. Zaznajomienie z możliwościami dostępnych na rynku aplikacji sztucznej inteligencji wykorzystywanych w zadaniach demonstracyjnych i praktycznych. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Opracowanie modelu sterownika rozmytego. Wykorzystanie modelu wnioskowania rozmytego do analizy wpływu postaci bazy reguł lingwistycznych na wynik wnioskowania. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu FuzzyTECH. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Ustalenie postaci zbirów rozmytych. Dobór metod denazyfikacji. | 3 |
T-L-2 | Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych. | 3 |
T-L-3 | Wykorzystanie algorytmów genetycznych do rozwiązaywnaia przykładowych problemów produkcyjnych | 3 |
9 | ||
wykłady | ||
T-W-1 | Definicje i klasyfikacja metod sztucznej inteligencji. Rozwój metod sztucznej inteligencji w latach 50-90 XX wieku. Omówienie kamieni milowych: test Turinga, system symboliczny. Wprowadzenie do metod przeszukiwania przestrzeni stanów. | 3 |
T-W-2 | Zbiory rozmyte i przybliżone. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metody wnioskowania. Metody automatycznego generowanie baz reguł lingwistycznych. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi. | 2 |
T-W-3 | Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania i zastosowanie w optymalizacji. Przykłady zastosowań algorytmów ewolucyjnych do sterowania i harmonogramowania procesów produkcyjnych. | 2 |
T-W-4 | Sztuczne sieci neuronowe. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Uczenie sieci wielowarstwowych. Przygotowanie danych uczących. Przykłady zastosowań sztucznych sieci neuronowych rozpoznawanie, klasyfikacja, analiza danych temporalnych. | 2 |
9 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 9 |
A-L-2 | Przygotowanie do zajęć | 16 |
25 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 9 |
A-W-2 | konsultacje | 2 |
A-W-3 | Przygotowanie do zajęć | 14 |
25 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny-prezentacja. |
M-2 | Metoda przypadków. Omówienie przykładów rzeczywistych i ich dyskusja. |
M-3 | Dyskusja dydaktyczna. Rozważania problemów z zakresu sztucznej inteligencji. |
M-4 | Ćwiczenia laboratoryjne - samodzielna praca z oprogramowaniem komputerowym. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Laboratoria - sprawdziany z bieżącej tematyki laboratoriów. |
S-2 | Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań. |
S-3 | Ocena podsumowująca: Wykład - Zaliczenie pisemne z zagadnień omawianych na wykładzie. Forma pytań i zadań do rozwiązania. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_D09_W01 Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji. | ME_2A_W08, ME_2A_W07, ME_2A_W04 | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-4 | M-1, M-2, M-3 | S-3 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_D09_U01 Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów. | ME_2A_U09, ME_2A_U12, ME_2A_U15, ME_2A_U02 | — | — | C-2 | T-W-1, T-W-2, T-W-3 | M-4 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_D09_K01 Właściwa postawa i motywacja do pracy w grupie. | ME_2A_K02, ME_2A_K01 | — | — | C-2 | T-W-1, T-W-2, T-W-3, T-W-4 | M-4 | S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_D09_W01 Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji. | 2,0 | |
3,0 | Ugruntowana wiedza analityczna dotycząca metod szucznej inteligencji | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_D09_U01 Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów. | 2,0 | |
3,0 | Umiejętność budowy modeli sterowników romytych oraz algorytmów genteycznych | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_D09_K01 Właściwa postawa i motywacja do pracy w grupie. | 2,0 | |
3,0 | Zaangażowanie w pracy zespołowej przy rozwiazywaniu zadań problemowych, obiczeniach i symulacjach | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Andrzej Piegat, Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 1999
- Ryszard Knosala, Zastosowanie metod sztucznej inteligencji w inżyneirii produkcji, Helion, Warszawa, 2011
- Andrzej Jardzioch, Sterowanie elastycznymi systemami obróbkowymi z zastosowaniem metod sztucznej inteligencji, Wydaw. Zachodniopomorskiego Uniwersytetu Technologicznego, Szczecin, 2009
Literatura dodatkowa
- Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa, Łódź, 1997