Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu Basics of control theory for linear systems:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Basics of control theory for linear systems
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mechatroniki
Nauczyciel odpowiedzialny Andrzej Bodnar <Andrzej.Bodnar@zut.edu.pl>
Inni nauczyciele Andrzej Bodnar <Andrzej.Bodnar@zut.edu.pl>, Arkadiusz Parus <Arkadiusz.Parus@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 15 2,00,35zaliczenie
wykładyW1 30 2,00,40egzamin
ćwiczenia audytoryjneA1 15 1,00,25zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Basics of physics, differentiation, integration.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The lecture gives basic knowledge on linear control systems theory. Student has basic knowledge about elements of linear control systems – their description and characteristics, knows methods used for the system analysis and its quality assessmen, knows basic rules of linear control system design.
C-2Exercises and laboratory help students to apply and deepen their knowledge on solving practical problems. Student is able to carry out analysis of a linear control system, can interpret transfer functions and frequency characteristics, find stability margins and tune controllers.
C-3Student can work effectively in a group.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Determination of an equivalent transfer function of a complex control system. Finding system response to impulse and step. Finding steady-state system response to harmonic excitation. Determination of control error. Using stability criteria for assessing limits of stability. Calculation of stability margins. Choosing controler settings.15
15
laboratoria
T-L-1Determination of transfer functions and different characteristics of real systems. Finding response to a given signal. Checking stability conditions. Simulation of control system with the help of Matlab - Simulink.15
15
wykłady
T-W-1Mathematical models. Closed loop systems. System transfer function. Block diagrams. Pulse and step response. Frequency response and frequency bandwidth. Characteristics of basic elements and elementary control systems. Static errors and disturbance propagation. Stability criteria. Roots on s-plane. Performance specification. Basics of linear control system design; PID controller. MIMO systems. State variables. Controllability and observability. Dynamical observers. Robustness. Dealing with nonlinearities.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Attending seminar15
A-A-2Preparation to tests5
A-A-3Consulting problems2
A-A-4Solving problems at home3
25
laboratoria
A-L-1Doing lab works15
A-L-2Writing reports15
A-L-3Preparation to discussion on the reports5
A-L-4Studying literature15
50
wykłady
A-W-1Lectures30
A-W-2Studying books, searching internet10
A-W-3Preparation to exam10
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lecture, laboratory and workshop.
M-2Observation of students work and cooperation in the group (laboratories

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Two term-time written tests. Laboratory reports.
S-2Ocena podsumowująca: Written exam.
S-3Ocena formująca: Observation of students work and cooperation in the group (laboratories).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WIMiM_1-_null_W01
Student has basic knowledge on linear control systems theory, on the description and characteristics of basic elements of control systems. Knows methods used for the system analysis, testing and its quality assessment. Knows basic rules of linear control system design.
C-1T-W-1, T-A-1M-1S-2, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WIMiM_1-_null_U01
Students can apply their knowledge when solving practical problems on control - analysis, simulation, testing and design of simple systems.
C-2T-A-1, T-L-1M-1S-2, S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WIMiM_1-_null_K01
Students can effectively work in a team.
C-3T-A-1, T-L-1M-2S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WIMiM_1-_null_W01
Student has basic knowledge on linear control systems theory, on the description and characteristics of basic elements of control systems. Knows methods used for the system analysis, testing and its quality assessment. Knows basic rules of linear control system design.
2,0
3,0Student presents basic knowledge of the subject.
3,5
4,0Student understands basic rules and methods used in theory and pracice.
4,5
5,0Student understands methods used in thery and in solving practical problems. Can explain and interpret the influence of different factors on results.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WIMiM_1-_null_U01
Students can apply their knowledge when solving practical problems on control - analysis, simulation, testing and design of simple systems.
2,0
3,0Student can correctly solve approx. 65% of problems given during tests and exam..
3,5
4,0Student can use basic rules used in theoretical analysis and solving practical problems. During the tests and the exam student solved at least 75 % of problems. .
4,5
5,0Student can solve practical and theoretical problems choosing optimal methods (calculation, simulation, measurement)..During the tests and the exam sudent solved at least 90 % of problems.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WIMiM_1-_null_K01
Students can effectively work in a team.
2,0
3,0Student cooperates effectively in a group.
3,5
4,0
4,5
5,0Student cooperates effectively in a group, can take the position of a leader.

Literatura podstawowa

  1. Clarence W. de Silva, Modeling and control of engineering systems., CRC Press/Taylor & Francis Group., Boca Raton, 2009

Literatura dodatkowa

  1. Rowland J.R., Linear Control Systems. Modelling, analysis, and design., John Wiley, New York, 1986

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Determination of an equivalent transfer function of a complex control system. Finding system response to impulse and step. Finding steady-state system response to harmonic excitation. Determination of control error. Using stability criteria for assessing limits of stability. Calculation of stability margins. Choosing controler settings.15
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Determination of transfer functions and different characteristics of real systems. Finding response to a given signal. Checking stability conditions. Simulation of control system with the help of Matlab - Simulink.15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Mathematical models. Closed loop systems. System transfer function. Block diagrams. Pulse and step response. Frequency response and frequency bandwidth. Characteristics of basic elements and elementary control systems. Static errors and disturbance propagation. Stability criteria. Roots on s-plane. Performance specification. Basics of linear control system design; PID controller. MIMO systems. State variables. Controllability and observability. Dynamical observers. Robustness. Dealing with nonlinearities.30
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Attending seminar15
A-A-2Preparation to tests5
A-A-3Consulting problems2
A-A-4Solving problems at home3
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Doing lab works15
A-L-2Writing reports15
A-L-3Preparation to discussion on the reports5
A-L-4Studying literature15
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Lectures30
A-W-2Studying books, searching internet10
A-W-3Preparation to exam10
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WIMiM_1-_null_W01Student has basic knowledge on linear control systems theory, on the description and characteristics of basic elements of control systems. Knows methods used for the system analysis, testing and its quality assessment. Knows basic rules of linear control system design.
Cel przedmiotuC-1The lecture gives basic knowledge on linear control systems theory. Student has basic knowledge about elements of linear control systems – their description and characteristics, knows methods used for the system analysis and its quality assessmen, knows basic rules of linear control system design.
Treści programoweT-W-1Mathematical models. Closed loop systems. System transfer function. Block diagrams. Pulse and step response. Frequency response and frequency bandwidth. Characteristics of basic elements and elementary control systems. Static errors and disturbance propagation. Stability criteria. Roots on s-plane. Performance specification. Basics of linear control system design; PID controller. MIMO systems. State variables. Controllability and observability. Dynamical observers. Robustness. Dealing with nonlinearities.
T-A-1Determination of an equivalent transfer function of a complex control system. Finding system response to impulse and step. Finding steady-state system response to harmonic excitation. Determination of control error. Using stability criteria for assessing limits of stability. Calculation of stability margins. Choosing controler settings.
Metody nauczaniaM-1Lecture, laboratory and workshop.
Sposób ocenyS-2Ocena podsumowująca: Written exam.
S-1Ocena formująca: Two term-time written tests. Laboratory reports.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student presents basic knowledge of the subject.
3,5
4,0Student understands basic rules and methods used in theory and pracice.
4,5
5,0Student understands methods used in thery and in solving practical problems. Can explain and interpret the influence of different factors on results.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WIMiM_1-_null_U01Students can apply their knowledge when solving practical problems on control - analysis, simulation, testing and design of simple systems.
Cel przedmiotuC-2Exercises and laboratory help students to apply and deepen their knowledge on solving practical problems. Student is able to carry out analysis of a linear control system, can interpret transfer functions and frequency characteristics, find stability margins and tune controllers.
Treści programoweT-A-1Determination of an equivalent transfer function of a complex control system. Finding system response to impulse and step. Finding steady-state system response to harmonic excitation. Determination of control error. Using stability criteria for assessing limits of stability. Calculation of stability margins. Choosing controler settings.
T-L-1Determination of transfer functions and different characteristics of real systems. Finding response to a given signal. Checking stability conditions. Simulation of control system with the help of Matlab - Simulink.
Metody nauczaniaM-1Lecture, laboratory and workshop.
Sposób ocenyS-2Ocena podsumowująca: Written exam.
S-1Ocena formująca: Two term-time written tests. Laboratory reports.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student can correctly solve approx. 65% of problems given during tests and exam..
3,5
4,0Student can use basic rules used in theoretical analysis and solving practical problems. During the tests and the exam student solved at least 75 % of problems. .
4,5
5,0Student can solve practical and theoretical problems choosing optimal methods (calculation, simulation, measurement)..During the tests and the exam sudent solved at least 90 % of problems.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WIMiM_1-_null_K01Students can effectively work in a team.
Cel przedmiotuC-3Student can work effectively in a group.
Treści programoweT-A-1Determination of an equivalent transfer function of a complex control system. Finding system response to impulse and step. Finding steady-state system response to harmonic excitation. Determination of control error. Using stability criteria for assessing limits of stability. Calculation of stability margins. Choosing controler settings.
T-L-1Determination of transfer functions and different characteristics of real systems. Finding response to a given signal. Checking stability conditions. Simulation of control system with the help of Matlab - Simulink.
Metody nauczaniaM-2Observation of students work and cooperation in the group (laboratories
Sposób ocenyS-3Ocena formująca: Observation of students work and cooperation in the group (laboratories).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student cooperates effectively in a group.
3,5
4,0
4,5
5,0Student cooperates effectively in a group, can take the position of a leader.