Wydział Ekonomiczny - Economics (S1)
Sylabus przedmiotu Mathematics I:
Informacje podstawowe
Kierunek studiów | Economics | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | licencjat | ||
Obszary studiów | charakterystyki PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Mathematics I | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Zastosowań Matematyki w Ekonomii | ||
Nauczyciel odpowiedzialny | Joanna Perzyńska <joanna.perzynska@zut.edu.pl> | ||
Inni nauczyciele | Maciej Oesterreich <Maciej.Oesterreich@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Knowledge of the advanced level mathematics from the secondary school |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Students will gain basic knowledge of higher mathematics. |
C-2 | Students will gain basic knowledge necessary to understand subjects using advanced mathematics techniques: statistics, operational research, quantitative methods in economics. |
C-3 | Students will apply mathematical knowledge to the study of economic phenomena. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Limits of numerical sequences and functions, continuity of functions | 8 |
T-A-2 | Test # 1 | 2 |
T-A-3 | Derivative of the one variable function | 6 |
T-A-4 | Local and global extrema of the one variable function | 6 |
T-A-5 | Course of variability of the one variable function | 6 |
T-A-6 | Test # 2 | 2 |
30 | ||
wykłady | ||
T-W-1 | Limits of numerical sequences and functions | 4 |
T-W-2 | Continuity of functions | 2 |
T-W-3 | Derivative of the one variable function | 4 |
T-W-4 | Local and global extrema of the one variable function | 4 |
T-W-5 | Course of variability of one variable function | 4 |
T-W-6 | Test | 2 |
20 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Participation in classes. | 30 |
A-A-2 | Preparations for classes | 10 |
A-A-3 | Homework | 10 |
A-A-4 | Preparation for tests | 10 |
60 | ||
wykłady | ||
A-W-1 | Participation in lectures | 20 |
A-W-2 | Preparation for lectures | 5 |
A-W-3 | Studying the literature | 5 |
A-W-4 | Preparation for the test | 10 |
40 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Information-problem lecture. |
M-2 | Exercises. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Evaluation of activity during classes. |
S-2 | Ocena formująca: Evaluation of individual problem solving during classes. |
S-3 | Ocena formująca: Evaluation of homework solving (individually and in groups). |
S-4 | Ocena podsumowująca: Test. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
Ec_1A_B01_W01 The student knows the theoretical basis of the differential calculus of the one variable function. | Ec_1A_W07 | — | C-1, C-3, C-2 | T-W-1, T-W-3, T-W-4, T-W-5, T-W-2 | M-1 | S-4 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
Ec_1A_B01_U01 The student can use the learned definitions and theorems of mathematical analysis to solve practical tasks. | Ec_1A_U01, Ec_1A_U11 | — | C-1, C-3, C-2 | T-A-1, T-A-3, T-A-4, T-A-5 | M-2 | S-2, S-1, S-3, S-4 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
Ec_1A_B01_K01 The student has mastered the principles of self-solving problems | Ec_1A_K01 | — | C-1, C-3, C-2 | T-A-1, T-A-3, T-A-4, T-A-2, T-A-6, T-A-5 | M-1, M-2 | S-2, S-1, S-3, S-4 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
Ec_1A_B01_W01 The student knows the theoretical basis of the differential calculus of the one variable function. | 2,0 | The student does not meet the requirements for a positive grade. |
3,0 | The student explains in his own words the definitions and theorems from the studied areas of higher mathematics. | |
3,5 | The student correctly formulates definitions and theorems from the known sections of higher mathematics in mathematical language. | |
4,0 | Moreover, the student knows examples illustrating the known definitions and theorems. | |
4,5 | The student also knows geometric interpretation of the known definitions and theorems and conclusions resulting from them. | |
5,0 | The student also knows the economic interpretation of the definitions and theorems. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
Ec_1A_B01_U01 The student can use the learned definitions and theorems of mathematical analysis to solve practical tasks. | 2,0 | The student does not meet the requirements for a passing grade. |
3,0 | The student can: - calculate the limit of the arithmetic and geometrical sequence, - calculate the limit of a rational function, - calculate the derivative of the function of one variable based on formulas. | |
3,5 | The student is also able to: - calculate the limit of any function of one variable, - calculate the derivative of a function of one variable based on definitions, - calculate the derivative of any order based on formulae, - calculate global extrema of a function of one variable, - determine monotonicity intervals of functions of one variable. | |
4,0 | In addition, the student can independently: - examine the continuity of a function of one variable, - calculate the limit of a function of one variable based on de L'Hospital's rule, - determine asymptotes of functions of one variable, - determine inflection points and convexity and concavity intervals of functions. | |
4,5 | The student is also able to independently: - perform the above tasks using examples familiar from economics (e.g., determine the minimum of the cost function, determine and interpret asymptotes of the Tornquist demand function), - carry out a complete study of the course of variation of a function of one variable. | |
5,0 | The student is also able to independently: - perform the above tasks on new examples (different from those presented in class and assigned at home), - to carry out comprehensive checking, analysis and interpretation of obtained results, - suggest alternative methods of solving tasks. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
Ec_1A_B01_K01 The student has mastered the principles of self-solving problems | 2,0 | The student has not mastered the principles of self-solving research problems |
3,0 | The student solves research problems following the teacher's instructions. | |
3,5 | The student solves research problems using the teacher's few tips. | |
4,0 | The student is able to identify the methods needed to solve a defined problem, solves the tasks and is able to make a preliminary analysis of the results obtained. | |
4,5 | The student is able to identify the methods needed to solve a defined problem, solve problems, can make a preliminary analysis and present the obtained results. | |
5,0 | The student is able to identify all the methods needed to solve a defined problem, solves problems, can make a comprehensive analysis and presentation of the results obtained. |
Literatura podstawowa
- Babula E., Czerwonka L., Zastosowanie matematyki w ekonomii i zarządzaniu / Mathematical applications in economics and management, Wydawnictwo Uniwersytetu Gdańskiego, 2015
- M.Pemberton, N.Rau, Mathematics for Economists, Manchester University Press, 2012
- SC Aggarwal, RK Rana, Basic Mathematics for Economists, FK Publications, 2010
Literatura dodatkowa
- Krysicki W., Włodarski L., Analiza matematyczna w zadaniach. cz.1 i 2., PWN, Warszawa, 2021
- Winnicki K., Miklewska J., Perzyńska J., Zbiór przykładów i zadań z matematyki dla studentów studiów zaocznych, AR, Szczecin, 2002