Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S1)

Sylabus przedmiotu Podstawy nauki o materiałach II:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy nauki o materiałach II
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Technologii Materiałowych
Nauczyciel odpowiedzialny Anna Biedunkiewicz <Anna.Biedunkiewicz@zut.edu.pl>
Inni nauczyciele Renata Chylińska <Renata.Chylinska@zut.edu.pl>, Paweł Figiel <Pawel.Figiel@zut.edu.pl>, Sebastian Fryska <Sebastian.Fryska@zut.edu.pl>, Paweł Kochmański <Pawel.Kochmanski@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 30 2,00,38zaliczenie
wykładyW2 45 3,00,62egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Opanowany zakres materiału z zakresu Podstaw Nauki o Materiałach I.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
C-3Student rozwija umiejętność pracy w grupie.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie, zasady BHP1
T-L-2Korozja gazowa2
T-L-3Badania odporności korozyjnej złącza spawanego2
T-L-4Badania makroskopowe2
T-L-5Korozja wżerowa2
T-L-6Badanie korozyjne w mgle solnej2
T-L-7Układ równowagi Fe-Fe3C.2
T-L-8Badania makroskopowe.2
T-L-9Stale utwardzane wydzieleniowo.2
T-L-10Stopy odporne na korozję.2
T-L-11Badanie hartowności stali metodą Jomminy'ego.2
T-L-12Badanie mikrotwardości.2
T-L-13Stopy żaroodporne i żarowytrzymałe.2
T-L-14Stopy miedzi, cyny, cynku i ołowiu.2
T-L-15Stopy aluminium i tytanu.2
T-L-16Zajęcia zaliczające.1
30
wykłady
T-W-1Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe.25
T-W-2Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją.20
45

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w ćwiczeniach laboratoryjnych30
A-L-2Analiza wskazanej literatury8
A-L-3Przygotowanie do zaliczenia pisemnego.10
A-L-4Zaliczenie pisemne ćwiczeń.2
50
wykłady
A-W-1Uczestnictwo w wykładach.45
A-W-2Analizowanie treści wykładu w opraciu o wskazaną literaturę.15
A-W-3Uczestnictwo w konsultacjach.3
A-W-4Samodzielne przygotowanie sie do egzaminu w oparciu o wskazana literaturę.10
A-W-5Udział w pisemnym egzaminie.2
75

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów spradzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
S-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C10_W01
Student zna podstawy obróbki cieplnochemicznej oraz wiedzę o materiałach konstrukcyjnych i narzędziowych. Student ma wiedzę o zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
MBM_1A_W02C-1, C-3, C-2T-L-8, T-L-9, T-L-11, T-L-12, T-L-4, T-L-10, T-L-7, T-W-2, T-W-1M-1, M-2S-1, S-2, S-3

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C10_U01
Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
MBM_1A_U05, MBM_1A_U18C-1, C-3, C-2T-L-8, T-L-9, T-L-11, T-L-12, T-L-4, T-L-10, T-L-7, T-W-2, T-W-1M-1, M-2S-1, S-2, S-3

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_C10_K01
Zna podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inżynierii materiałowej. Zna powiązania technik wytwarzania materiałów z ich eksploatacją i utylizacją. Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
MBM_1A_K02C-1, C-3, C-2T-L-8, T-L-9, T-L-11, T-L-12, T-L-4, T-L-10, T-L-7, T-W-2, T-W-1M-1, M-2S-1, S-2, S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C10_W01
Student zna podstawy obróbki cieplnochemicznej oraz wiedzę o materiałach konstrukcyjnych i narzędziowych. Student ma wiedzę o zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
2,0Student nie ma podstaw wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
3,0Student ma podstawy wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
3,5Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
4,0Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania, zna sposoby doboru materiału do warunków jego eksploatacji.
4,5Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania.
5,0Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania, wskazuje potencjalne przyczyny zniszczenia na podsatwie objawów.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C10_U01
Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
2,0Student nie potrafi skorelować struktury materiału konstrukcyjnego i narzędziowego z właściwościami, nie potrafi wybrać metody badań oraz nie potrafi interpretować wyników badań materiałów.
3,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
3,5Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
4,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować grupę materiałów i wybrać najkorzystniejszy do określonych warunków zużycia materiału.
4,5Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub/i zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych.
5,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych. Student potrafi ocenić objawy zniszczenia materiału i wskazać przyczyny.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_C10_K01
Zna podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inżynierii materiałowej. Zna powiązania technik wytwarzania materiałów z ich eksploatacją i utylizacją. Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
2,0Nie zna podstaw nauki o materiałach i nie rozumie pozatechnicznych aspektów z zakresu inzynierii materiałowej.
3,0Zna podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją.
3,5Zna dobrze podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją.
4,0Zna bardzo dobrze podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
4,5Zna podstawy bardzo dobrze nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. bardzo dobrze Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
5,0Zna podstawy bardzo dobrze nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. bardzo dobrze Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zna przepisy związane z zastosowaniem materiałów. Poterafi podac przykłady z literatury.

Literatura podstawowa

  1. J.Baszkiewicz, M. Kamiński, Podstawy korozji materiałów, Oficyna Wydawnicza Politechiki Warszawskiej, Warszawa, 2006, II
  2. Baranowska J., BiedunkiewiczA. i inni, Ćwiczenia laboratoryjne z materiałów metalicznych, Wydawnictwo Uczelniane ZUT, Szczecin, 2013
  3. H.H.Uhling, Korozja i jej zapobieganie, WNT, Warszawa, 1976
  4. L.A.Dobrzański, Metaloznawstwo z podstawami nauki o materiałach, WNT Warszawa, Warszawa, 1994
  5. S.Prowans, Materiałoznawstwo – cwiczenia laboratoryjne, Politechnika Szczecińska, Szczecin, 1978

Literatura dodatkowa

  1. K. Przybyłowicz, Metaloznawstwo, WNT, Warszawa, 1994
  2. L.A.Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT, Gliwice-Warszawa, 2002
  3. A.Barbacki, Metaloznawstwo dla mechaników, Wydawnictwo Politechnik Poznańskiej, Poznań, 1998

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie, zasady BHP1
T-L-2Korozja gazowa2
T-L-3Badania odporności korozyjnej złącza spawanego2
T-L-4Badania makroskopowe2
T-L-5Korozja wżerowa2
T-L-6Badanie korozyjne w mgle solnej2
T-L-7Układ równowagi Fe-Fe3C.2
T-L-8Badania makroskopowe.2
T-L-9Stale utwardzane wydzieleniowo.2
T-L-10Stopy odporne na korozję.2
T-L-11Badanie hartowności stali metodą Jomminy'ego.2
T-L-12Badanie mikrotwardości.2
T-L-13Stopy żaroodporne i żarowytrzymałe.2
T-L-14Stopy miedzi, cyny, cynku i ołowiu.2
T-L-15Stopy aluminium i tytanu.2
T-L-16Zajęcia zaliczające.1
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe.25
T-W-2Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją.20
45

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w ćwiczeniach laboratoryjnych30
A-L-2Analiza wskazanej literatury8
A-L-3Przygotowanie do zaliczenia pisemnego.10
A-L-4Zaliczenie pisemne ćwiczeń.2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach.45
A-W-2Analizowanie treści wykładu w opraciu o wskazaną literaturę.15
A-W-3Uczestnictwo w konsultacjach.3
A-W-4Samodzielne przygotowanie sie do egzaminu w oparciu o wskazana literaturę.10
A-W-5Udział w pisemnym egzaminie.2
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C10_W01Student zna podstawy obróbki cieplnochemicznej oraz wiedzę o materiałach konstrukcyjnych i narzędziowych. Student ma wiedzę o zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_W02ma wiedzę w zakresie fizyki i chemii niezbędną do rozumienia zjawisk związanych z: obróbką materiałów, spajaniem, funkcjonowaniem aparatury pomiarowej, zużyciem i korozją, ochroną środowiska, procesami cieplnymi, właściwościami materiałów konstrukcyjnych
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-3Student rozwija umiejętność pracy w grupie.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
Treści programoweT-L-8Badania makroskopowe.
T-L-9Stale utwardzane wydzieleniowo.
T-L-11Badanie hartowności stali metodą Jomminy'ego.
T-L-12Badanie mikrotwardości.
T-L-4Badania makroskopowe
T-L-10Stopy odporne na korozję.
T-L-7Układ równowagi Fe-Fe3C.
T-W-2Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją.
T-W-1Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów spradzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
S-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma podstaw wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
3,0Student ma podstawy wiedzy o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
3,5Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania.
4,0Student ma dobrze ugruntowaną wiedzę o materiałach konstrukcyjnych i narzędziowych, obróbce cieplnochemicznej oraz zjawiskach niszczenia materiałów w warunkach eksploatacyjnych i sposobach zapobiegania, zna sposoby doboru materiału do warunków jego eksploatacji.
4,5Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania.
5,0Student zna sposoby doboru materiałów konstrukcyjnych i narzędziowych lub/i ich obróbek cieplnochemicznych do warunków eksploatacji oraz opisuje zjawiska niszczenia materiałów w warunkach eksploatacyjnych i zna sposoby zapobiegania, wskazuje potencjalne przyczyny zniszczenia na podsatwie objawów.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C10_U01Student potrafi skorelować strukturę materiałów konstrukcyjnych oraz narzędziowych z ich właściwościami oraz potrafi wybrać metodę badań struktury i właściwości materiałów, a także dokonać interpretacji uzyskanych wyników, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_U05ma umiejętność samokształcenia - samodzielnego poszukiwania informacji i analizowania poznanych zagadnień
MBM_1A_U18potrafi dobrać rodzaj tworzywa konstrukcyjnego z punktu widzenia składu chemicznego, mikrostruktury i właściwości odpowiadających sformułowanym wcześniej wymaganiom; rozważyć możliwość substytucji tworzyw konstrukcyjnych z uwzględnieniem kosztów
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-3Student rozwija umiejętność pracy w grupie.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
Treści programoweT-L-8Badania makroskopowe.
T-L-9Stale utwardzane wydzieleniowo.
T-L-11Badanie hartowności stali metodą Jomminy'ego.
T-L-12Badanie mikrotwardości.
T-L-4Badania makroskopowe
T-L-10Stopy odporne na korozję.
T-L-7Układ równowagi Fe-Fe3C.
T-W-2Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją.
T-W-1Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów spradzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
S-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi skorelować struktury materiału konstrukcyjnego i narzędziowego z właściwościami, nie potrafi wybrać metody badań oraz nie potrafi interpretować wyników badań materiałów.
3,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
3,5Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu fazowego, struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować materiał do określonych warunków zużycia materiału.
4,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wskazać lub zaproponować grupę materiałów i wybrać najkorzystniejszy do określonych warunków zużycia materiału.
4,5Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań składu struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub/i zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych.
5,0Student potrafi skorelować strukturę materiału konstrukcyjnego i narzędziowego z właściwościami, potrafi wybrać metodę badań struktury i właściwości materiałów oraz potrafi interpretować wyniki badań materiałów, potrafi ocenić wyniki badań, potrafi wybrać najkorzystniejszy materiał lub zaproponować modyfikację właściwości materiału metodami obróbki cieplnochemicznej do określonych warunków eksploatacyjnych. Student potrafi ocenić objawy zniszczenia materiału i wskazać przyczyny.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_C10_K01Zna podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inżynierii materiałowej. Zna powiązania technik wytwarzania materiałów z ich eksploatacją i utylizacją. Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów.
C-3Student rozwija umiejętność pracy w grupie.
C-2Student zdobywa umiejętość korzystania ze źródeł literatury.
Treści programoweT-L-8Badania makroskopowe.
T-L-9Stale utwardzane wydzieleniowo.
T-L-11Badanie hartowności stali metodą Jomminy'ego.
T-L-12Badanie mikrotwardości.
T-L-4Badania makroskopowe
T-L-10Stopy odporne na korozję.
T-L-7Układ równowagi Fe-Fe3C.
T-W-2Mechanizmy zniszczenia materiałów w warunkach eksploatacyjnych. Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw polimerowych, ceramiki i betonów. Metody badań korozyjnych. Negatywne skutki korozji i ochrony przed korozją dla właściwości mechanicznych i środowiska naturalnego. Metody badań korozyjnych. Materiały w ochronie przed korozją.
T-W-1Podstawy obróbki cieplnej i cieplno - chemicznej stopów żelaza. Stale stopowe konstrukcyjne, narzędziowe i specjalne. Żeliwa. Stopy narzędziowe: do pracy na zimno, do pracy na gorąco, stale szybkotnące, ceramika narzędziowa. Stopy o specjalnych właściwościach. Stopy aluminium, miedzi, magnezu, cynku. Stopy nieżelazne specjalne. Zjawiska nadplastyczności, nadprzewodnictwa, materiały z pamięcią kształtu, szkła metaliczne. Materiały ceramiczne i polimerowe.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych, zaliczeń krótkich sprawdzianów spradzajacych przygotowanie do ćwiczeń oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie podsumowujące.
S-2Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do egzaminu pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów.
S-3Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z egzaminu (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Nie zna podstaw nauki o materiałach i nie rozumie pozatechnicznych aspektów z zakresu inzynierii materiałowej.
3,0Zna podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją.
3,5Zna dobrze podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją.
4,0Zna bardzo dobrze podstawy nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
4,5Zna podstawy bardzo dobrze nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. bardzo dobrze Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zan przepisy związane z zastosowaniem materiałów.
5,0Zna podstawy bardzo dobrze nauki o materiałach i rozumie pozatechniczne aspekty z zakresu inzynierii materiałowej. Zna powiązania technik wytwearzania materiałów z ich eksploatacją i utylizacją. bardzo dobrze Rozumie aspekty środowiskowe związane z materiałami inżynierskimi. Zna przepisy związane z zastosowaniem materiałów. Poterafi podac przykłady z literatury.