Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu TRANSPORT AND SEPARATION PROCESSES:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot TRANSPORT AND SEPARATION PROCESSES
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Maciej Konopacki <mkonopacki@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 30 2,00,30zaliczenie
laboratoriaL3 15 1,00,40zaliczenie
ćwiczenia audytoryjneA3 15 1,00,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Fundamentals of chemical engineering

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The student will be able to: 1. Formulate governing equation for momentum, mass, and heat transfer. 2. Identify the terms describing storage, convection, diffusion, dispersion, and generation in the general governing equation for momentum, mass, and heat transfer. 3. Understand the various components needed for setting up conservation equations. 4. Utilize information obtained from solutions of the balance equations to solve chemical engineering problems. 5. Appreciate relevance of transport phenomena in chemical engineering. 6. Demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. 7. Describe the scientific principles associated with separation equipments. 8. Demonstrate basic knowledge of making mass balances and specifying component recovery and product purity. 9. Demonstrate basic knowledge of modeling and simulation of separation processes using POLYMATH, ASPEN PLUS and HYSYS.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Derivation of momentum conservation equations. Solving selected problems related to momentum transfer.2
T-A-2Derivation of energy conservation equations. Solving selected problems related to energy transfer.2
T-A-3Derivation of mass conservation equations. Solving selected problems related to mass transfer.3
T-A-4Thermodynamic analysis of selected separation processes. Single equilibrium stages calculations. Flash calculations.3
T-A-5Calculation of selected separation processes: distillation, liquid–liquid extraction, supercritical extraction, membrane separations, adsorption, ion exchange, chromatography, electrophoresis, mechanical phase separations.5
15
laboratoria
T-L-1Mechanical phase separation.2
T-L-2Membrane separations.2
T-L-3Liquid–liquid Extraction.2
T-L-4Adsorption separation of gas mixtures.2
T-L-5Modeling and simulation of separation processes using ASPEN PLUS and HYSYS.7
15
wykłady
T-W-1Momentum transport: Viscosity; Mechanisms of momentum transport; Momentum balances; Velocity distributions in laminar and turbulent flow; Interphase transport of momentum in isothermal systems; Macroscopic balances for isothermal flow systems.5
T-W-2Mass transport: Mechanisms of mass transport; Diffusivity; Mass balances; Concentration distributions in solids. Equations of change for multicomponent systems; Concentration distributions in turbulent flow, Interphase transport; Macroscopic mass balances for multicomponent systems.5
T-W-3Energy Transport: Mechanisms of energy transport; Thermal conductivity; Energy balances; Temperature distributions in solids; The equations of change for nonisothermal systems; Temperature distributions in turbulent flow; Interphase transport in nonisothermal systems; Macroscopic balances for nonisothermal systems.5
T-W-4Thermodynamics of separation processes. Single equilibrium stages calculations. Flash calculations. Cascades systems.3
T-W-5Hybrid systems. Absorption. Stripping of dilute mixtures. Distillation. Liquid–liquid Extraction.3
T-W-6Multicomponent, multistage separations. Supercritical extraction. Adsorption. Ion exchange. Chromatography. Electrophoresis. Mechanical phase separations.5
T-W-7The basic information about microfiltration, ultra- and nanofiltration, reverse osmosis and membrane distillation processes. The application of membrane processes for separation, concentration and purification of solutions.4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Class participation15
A-A-2Solving computational problems.8
A-A-3Tutorial2
25
laboratoria
A-L-1Class participation15
A-L-2Preparation of reports8
A-L-3Tutorial2
25
wykłady
A-W-1Class participation30
A-W-2Individual work18
A-W-3Tutorial2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1information method: lecture
M-2practical method: classes
M-3practical method: laboratories

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: evaluation of periodic student achievements
S-2Ocena podsumowująca: evaluation at the end of the course

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_C06x_W01
The student will be able to understand the various components needed for setting up conservation equations. The student will be able to demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses.
C-1T-W-1, T-W-2, T-W-3, T-W-5, T-W-6, T-W-7M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_C06x_U01
The student will be able to utilize information obtained from solutions of the balance equations to solve chemical engineering problems. The student will be able to describe the scientific principles associated with separation equipments.
C-1T-A-1, T-A-2, T-A-3, T-A-5M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_C06x_K01
The student will be able to appreciate relevance of transport phenomena in chemical engineering. The student will be able to demonstrate basic knowledge of modeling and simulation of separation processes using ASPEN PLUS and HYSYS.
C-1T-A-1, T-A-2, T-A-3M-1, M-2, M-3S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_C06x_W01
The student will be able to understand the various components needed for setting up conservation equations. The student will be able to demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses.
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_C06x_U01
The student will be able to utilize information obtained from solutions of the balance equations to solve chemical engineering problems. The student will be able to describe the scientific principles associated with separation equipments.
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_C06x_K01
The student will be able to appreciate relevance of transport phenomena in chemical engineering. The student will be able to demonstrate basic knowledge of modeling and simulation of separation processes using ASPEN PLUS and HYSYS.
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, Wiley, New York, 2007
  2. Welty J.R., Wicks Ch.E., Wilson R.E., Rorrer G.L., Fundamentals of Momentum, Heat, and Mass Transfer, Wiley, New York, 2008
  3. Seader J.D., Henley E.J., Separation Process Principles, Wiley, New York, 2006
  4. Wankat P.C., Separation Process Engineering, Prentice Hall, New Jersey, 2012

Literatura dodatkowa

  1. Brodkey R.S., Hershey H.C., Transport Phenomena. A Unified Approach., McGraw-Hill, New York, 1998
  2. Kessler D.P., Greenkorn R.A., Momentum, Heat, and Mass Transfer Fundamentals, Marcel Dekker, Basel, 1999
  3. Noble R.D., Terry P.A., Principles of Chemical Separations with Environmental Applications, Cambridge University Press, New York, 2004
  4. Seader J. D., Henley E.J., Roper D.K., Martin R.E., Separation Process Principles. Chemical and Biochemical Operations, Wiley, New York, 2011

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Derivation of momentum conservation equations. Solving selected problems related to momentum transfer.2
T-A-2Derivation of energy conservation equations. Solving selected problems related to energy transfer.2
T-A-3Derivation of mass conservation equations. Solving selected problems related to mass transfer.3
T-A-4Thermodynamic analysis of selected separation processes. Single equilibrium stages calculations. Flash calculations.3
T-A-5Calculation of selected separation processes: distillation, liquid–liquid extraction, supercritical extraction, membrane separations, adsorption, ion exchange, chromatography, electrophoresis, mechanical phase separations.5
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Mechanical phase separation.2
T-L-2Membrane separations.2
T-L-3Liquid–liquid Extraction.2
T-L-4Adsorption separation of gas mixtures.2
T-L-5Modeling and simulation of separation processes using ASPEN PLUS and HYSYS.7
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Momentum transport: Viscosity; Mechanisms of momentum transport; Momentum balances; Velocity distributions in laminar and turbulent flow; Interphase transport of momentum in isothermal systems; Macroscopic balances for isothermal flow systems.5
T-W-2Mass transport: Mechanisms of mass transport; Diffusivity; Mass balances; Concentration distributions in solids. Equations of change for multicomponent systems; Concentration distributions in turbulent flow, Interphase transport; Macroscopic mass balances for multicomponent systems.5
T-W-3Energy Transport: Mechanisms of energy transport; Thermal conductivity; Energy balances; Temperature distributions in solids; The equations of change for nonisothermal systems; Temperature distributions in turbulent flow; Interphase transport in nonisothermal systems; Macroscopic balances for nonisothermal systems.5
T-W-4Thermodynamics of separation processes. Single equilibrium stages calculations. Flash calculations. Cascades systems.3
T-W-5Hybrid systems. Absorption. Stripping of dilute mixtures. Distillation. Liquid–liquid Extraction.3
T-W-6Multicomponent, multistage separations. Supercritical extraction. Adsorption. Ion exchange. Chromatography. Electrophoresis. Mechanical phase separations.5
T-W-7The basic information about microfiltration, ultra- and nanofiltration, reverse osmosis and membrane distillation processes. The application of membrane processes for separation, concentration and purification of solutions.4
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Class participation15
A-A-2Solving computational problems.8
A-A-3Tutorial2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Class participation15
A-L-2Preparation of reports8
A-L-3Tutorial2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Class participation30
A-W-2Individual work18
A-W-3Tutorial2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_C06x_W01The student will be able to understand the various components needed for setting up conservation equations. The student will be able to demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses.
Cel przedmiotuC-1The student will be able to: 1. Formulate governing equation for momentum, mass, and heat transfer. 2. Identify the terms describing storage, convection, diffusion, dispersion, and generation in the general governing equation for momentum, mass, and heat transfer. 3. Understand the various components needed for setting up conservation equations. 4. Utilize information obtained from solutions of the balance equations to solve chemical engineering problems. 5. Appreciate relevance of transport phenomena in chemical engineering. 6. Demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. 7. Describe the scientific principles associated with separation equipments. 8. Demonstrate basic knowledge of making mass balances and specifying component recovery and product purity. 9. Demonstrate basic knowledge of modeling and simulation of separation processes using POLYMATH, ASPEN PLUS and HYSYS.
Treści programoweT-W-1Momentum transport: Viscosity; Mechanisms of momentum transport; Momentum balances; Velocity distributions in laminar and turbulent flow; Interphase transport of momentum in isothermal systems; Macroscopic balances for isothermal flow systems.
T-W-2Mass transport: Mechanisms of mass transport; Diffusivity; Mass balances; Concentration distributions in solids. Equations of change for multicomponent systems; Concentration distributions in turbulent flow, Interphase transport; Macroscopic mass balances for multicomponent systems.
T-W-3Energy Transport: Mechanisms of energy transport; Thermal conductivity; Energy balances; Temperature distributions in solids; The equations of change for nonisothermal systems; Temperature distributions in turbulent flow; Interphase transport in nonisothermal systems; Macroscopic balances for nonisothermal systems.
T-W-5Hybrid systems. Absorption. Stripping of dilute mixtures. Distillation. Liquid–liquid Extraction.
T-W-6Multicomponent, multistage separations. Supercritical extraction. Adsorption. Ion exchange. Chromatography. Electrophoresis. Mechanical phase separations.
T-W-7The basic information about microfiltration, ultra- and nanofiltration, reverse osmosis and membrane distillation processes. The application of membrane processes for separation, concentration and purification of solutions.
Metody nauczaniaM-1information method: lecture
M-2practical method: classes
M-3practical method: laboratories
Sposób ocenyS-1Ocena formująca: evaluation of periodic student achievements
S-2Ocena podsumowująca: evaluation at the end of the course
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_C06x_U01The student will be able to utilize information obtained from solutions of the balance equations to solve chemical engineering problems. The student will be able to describe the scientific principles associated with separation equipments.
Cel przedmiotuC-1The student will be able to: 1. Formulate governing equation for momentum, mass, and heat transfer. 2. Identify the terms describing storage, convection, diffusion, dispersion, and generation in the general governing equation for momentum, mass, and heat transfer. 3. Understand the various components needed for setting up conservation equations. 4. Utilize information obtained from solutions of the balance equations to solve chemical engineering problems. 5. Appreciate relevance of transport phenomena in chemical engineering. 6. Demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. 7. Describe the scientific principles associated with separation equipments. 8. Demonstrate basic knowledge of making mass balances and specifying component recovery and product purity. 9. Demonstrate basic knowledge of modeling and simulation of separation processes using POLYMATH, ASPEN PLUS and HYSYS.
Treści programoweT-A-1Derivation of momentum conservation equations. Solving selected problems related to momentum transfer.
T-A-2Derivation of energy conservation equations. Solving selected problems related to energy transfer.
T-A-3Derivation of mass conservation equations. Solving selected problems related to mass transfer.
T-A-5Calculation of selected separation processes: distillation, liquid–liquid extraction, supercritical extraction, membrane separations, adsorption, ion exchange, chromatography, electrophoresis, mechanical phase separations.
Metody nauczaniaM-1information method: lecture
M-2practical method: classes
M-3practical method: laboratories
Sposób ocenyS-1Ocena formująca: evaluation of periodic student achievements
S-2Ocena podsumowująca: evaluation at the end of the course
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_C06x_K01The student will be able to appreciate relevance of transport phenomena in chemical engineering. The student will be able to demonstrate basic knowledge of modeling and simulation of separation processes using ASPEN PLUS and HYSYS.
Cel przedmiotuC-1The student will be able to: 1. Formulate governing equation for momentum, mass, and heat transfer. 2. Identify the terms describing storage, convection, diffusion, dispersion, and generation in the general governing equation for momentum, mass, and heat transfer. 3. Understand the various components needed for setting up conservation equations. 4. Utilize information obtained from solutions of the balance equations to solve chemical engineering problems. 5. Appreciate relevance of transport phenomena in chemical engineering. 6. Demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. 7. Describe the scientific principles associated with separation equipments. 8. Demonstrate basic knowledge of making mass balances and specifying component recovery and product purity. 9. Demonstrate basic knowledge of modeling and simulation of separation processes using POLYMATH, ASPEN PLUS and HYSYS.
Treści programoweT-A-1Derivation of momentum conservation equations. Solving selected problems related to momentum transfer.
T-A-2Derivation of energy conservation equations. Solving selected problems related to energy transfer.
T-A-3Derivation of mass conservation equations. Solving selected problems related to mass transfer.
Metody nauczaniaM-1information method: lecture
M-2practical method: classes
M-3practical method: laboratories
Sposób ocenyS-1Ocena formująca: evaluation of periodic student achievements
S-2Ocena podsumowująca: evaluation at the end of the course
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Basic knowledge of subject matter
3,5
4,0
4,5
5,0