Wydział Biotechnologii i Hodowli Zwierząt - Biotechnologia (N1)
Sylabus przedmiotu Metody inżynierii genetycznej roślin:
Informacje podstawowe
| Kierunek studiów | Biotechnologia | ||
|---|---|---|---|
| Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
| Tytuł zawodowy absolwenta | inżynier | ||
| Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
| Profil | ogólnoakademicki | ||
| Moduł | — | ||
| Przedmiot | Metody inżynierii genetycznej roślin | ||
| Specjalność | przedmiot wspólny | ||
| Jednostka prowadząca | Katedra Genetyki, Hodowli i Biotechnologii Roślin | ||
| Nauczyciel odpowiedzialny | Piotr Masojć <Piotr.Masojc@zut.edu.pl> | ||
| Inni nauczyciele | Beata Myśków <Beata.Myskow@zut.edu.pl> | ||
| ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
| Forma zaliczenia | zaliczenie | Język | polski |
| Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
| KOD | Wymaganie wstępne |
|---|---|
| W-1 | biologia molekularna |
| W-2 | kultury in vitro roślin |
| W-3 | biochemia |
| W-4 | inżynieria genetyczna |
Cele przedmiotu
| KOD | Cel modułu/przedmiotu |
|---|---|
| C-1 | uzyskanie przez studentów wiedzy na temat współczesnych metod i osiągnięć inżynierii genetycznej roślin |
Treści programowe z podziałem na formy zajęć
| KOD | Treść programowa | Godziny |
|---|---|---|
| laboratoria | ||
| T-L-1 | przygotowanie materiału roślinnego do izolacji DNA, izolacja i ocena koncentracji DNA | 1 |
| T-L-2 | amplifikacja genu przewidzianego do tranformacji, optymalizacja warunków PCR | 2 |
| T-L-3 | izolacja produktu amplifikacji z żelu agarozowego | 1 |
| T-L-4 | klonowanie molekularne | 3 |
| T-L-5 | sekwencjonowanie | 3 |
| 10 | ||
| wykłady | ||
| T-W-1 | Metody wprowadzania transgenu do tkanki roślinnej | 1 |
| T-W-2 | Mechanizm transformacji roślin z użyciem Agrobacterium tumefaciens | 1 |
| T-W-3 | Strategie otrzymywania roślin transgenicznych odpornych na szkodniki owadzie | 1 |
| T-W-4 | Strategie otrzymywania roślin transgenicznych odpornych na herbicydy | 1 |
| T-W-5 | Strategie wprowadzania odporności na wirusy do roślin transgenicznych | 1 |
| T-W-6 | Strategie wprowadzania odporności na patogeny do roślin transgenicznych | 1 |
| T-W-7 | Strategie wprowadzania transgenów poprawiających cechy jakościowe roślin uprawnych | 1 |
| T-W-8 | Rośliny transgeniczne jako uprawy molekularne | 1 |
| 8 | ||
Obciążenie pracą studenta - formy aktywności
| KOD | Forma aktywności | Godziny |
|---|---|---|
| laboratoria | ||
| A-L-1 | uczestnictwo w ćwiczeniach | 10 |
| A-L-2 | praca własna studenta, opanowanie teoretycznych podstaw zagadnień, których dotyczą zadania wykonywane podczas ćwiczeń | 15 |
| 25 | ||
| wykłady | ||
| A-W-1 | Uczestnictwo w wykładach | 8 |
| A-W-2 | samodzielna praca studenta z notatkami i z podręcznikiem | 5 |
| A-W-3 | Przygotowanie do egzaminu | 8 |
| A-W-4 | egzamin testowy | 2 |
| A-W-5 | konsultacje | 2 |
| 25 | ||
Metody nauczania / narzędzia dydaktyczne
| KOD | Metoda nauczania / narzędzie dydaktyczne |
|---|---|
| M-1 | wykład informacyjny |
| M-2 | prezentacja multimedialna z użyciem komputera i rzutnika |
| M-3 | ćwiczenia laboratoryjne |
Sposoby oceny
| KOD | Sposób oceny |
|---|---|
| S-1 | Ocena podsumowująca: test pisemny z treści wykładów po zakończeniu zajęć . 30 pytań szczegółowych wymagających precyzyjnych lecz krótkich odpowiedzi |
| S-2 | Ocena podsumowująca: pisemny sprawdzian znajomości zagadnień opracowywanych w ramach ćwiczeń |
Zamierzone efekty uczenia się - wiedza
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| BT_1A_BT-N1-C16_W01 student opisuje i tłumaczy współczesne metody i zastosowania inżynierii genetycznej w doskonaleniu i badaniu roślin | BT_1A_W16, BT_1A_W10, BT_1A_W08 | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8 | M-1, M-2 | S-1 |
Zamierzone efekty uczenia się - umiejętności
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| BT_1A_BT-N1-C16_U01 student wykorzystuje narzędzia inżynierii genetycznej | BT_1A_U06, BT_1A_U15 | — | — | C-1 | T-L-3, T-L-1, T-L-4, T-L-5, T-L-2 | M-3 | S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| BT_1A_BT-N1-C16_K01 ma świadomość potencjału metod inżynierii genetycznej roślin i zagrożeń wynikających z wprowadzania GMO do upraw roślinnych | BT_1A_K06 | — | — | C-1 | T-L-3, T-L-1, T-L-4, T-L-5, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8 | M-3, M-1, M-2 | S-2, S-1 |
Kryterium oceny - wiedza
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| BT_1A_BT-N1-C16_W01 student opisuje i tłumaczy współczesne metody i zastosowania inżynierii genetycznej w doskonaleniu i badaniu roślin | 2,0 | student nie przyswoił żadnej wiedzy z zakresu przedmiotu |
| 3,0 | student wykazuje minimum wiedzy na temat podstawowych zagadnień z zakresu omawianych na wykładach | |
| 3,5 | student ma zadowalającą wiedzę na temat podstawowych zagadnień prezentowanych podczas wykładów | |
| 4,0 | student ma szczegółową wiedzę na temat zagadnień posuszanych podczas zajęć | |
| 4,5 | student ma szczegółową wiedzę na temat zagadnień poruszanych na zajęciach i wykazuje dodatkowo wiedzę z zakresu podręcznika | |
| 5,0 | student ma dogłębną wiedzę na temat zagadnień poruszanych na zajęciach i treści zawartych w podręczniku |
Kryterium oceny - umiejętności
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| BT_1A_BT-N1-C16_U01 student wykorzystuje narzędzia inżynierii genetycznej | 2,0 | nie umie wykorzystać narzędzi inzynierii genetycznej |
| 3,0 | wykorzystuje podstawowe narzędzia inzynierii genetycznej | |
| 3,5 | wykorzystuje podstawowe narzędzia inżynierii genetycznej oraz | |
| 4,0 | wykorzystuje podstawowe i bardziej zaawansowane narzędzia inżynierii genetycznej | |
| 4,5 | wykorzystuje większość zaawansowanych narzędzi inzynierii genetycznej | |
| 5,0 | wykorzystuje wszystkie zaawansowane narzędzia inżynierii genetycznej |
Kryterium oceny - inne kompetencje społeczne i personalne
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| BT_1A_BT-N1-C16_K01 ma świadomość potencjału metod inżynierii genetycznej roślin i zagrożeń wynikających z wprowadzania GMO do upraw roślinnych | 2,0 | nie ma świadomości ogromnego potencjału metod inzynierii genetycznej w stosunku do roslin uprawnych |
| 3,0 | ma świadomośc potencjału co do wybranych metod inzynierii genetycznej | |
| 3,5 | ma świadomośc potencjału co do połowy omawianych metod inzynierii genetycznej | |
| 4,0 | ma świadomość potencjału i zagrożeń ponad połowy omawianych metod inżynierii genetycznej | |
| 4,5 | ma świadomośc co do potencjału i zagrożeń wiekszości omawianych metod inżynierii genetycznej | |
| 5,0 | ma świadomośc co do potencjału i zagrożeń wszystkich omawianych metod inzynierii genetycznej |
Literatura podstawowa
- S. Malepszy (red), Biotechnologia roślin, Wydawnictwo Naukowe PWN, Warszawa, 2009
- A. Slater, N. Scott, M. Fowler, Plant Biotechnology. The genetic manipulation of plants, Oxford University Press, Oxford, 2003
Literatura dodatkowa
- J.D. Watson, M. Gilman, J. Witkowski, M. Zoller, Recombinant DNA. Second edition, W.H. Freeman and Company, New York, 1992