Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N1)
specjalność: Inżynieria systemów informacyjnych

Sylabus przedmiotu Przetwarzanie i analiza danych:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Przetwarzanie i analiza danych
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Marcin Korzeń <Marcin.Korzen@zut.edu.pl>
Inni nauczyciele Paweł Forczmański <Pawel.Forczmanski@zut.edu.pl>, Przemysław Klęsk <pklesk@wi.zut.edu.pl>, Izabela Rejer <irejer@wi.zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA4 10 1,00,20zaliczenie
wykładyW4 18 2,00,40zaliczenie
laboratoriaL4 18 2,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Algebra liniowa
W-2Matematyka stosowana ze statystyką 2
W-3Metody numeryczne
W-4Algorytmy 2

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zasadniczym celem przedmiotu jest zaznajomienie studenta z podstawowymi technikami analizy i przetwarzania różnego rodzaju danych. Celem dodatkowym jest zapoznanie praktyczne studenta z wybranym środowiiskiem analizy danych do wyboru rozważane mogą być środowiska analizy danych w językach Python, Matlab lub R.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Przypomnienie wiadomości z rachunku prewdopodobieństwa: niezależność, tw. Bayesa wzór na prawdopodobieństwo całkowite.2
T-A-2Elementarne pojęcia teorii informacji: entropia, entropia krzyżowa, informacja wzajemna, przyrost informacji, indeks Giniego, nierówność Gibbsa, własności związki z selekcją atrybutów oraz dyskretyzacją.2
T-A-3Techniki przetwarzania wstępnego, transformacje ortogonalne (PCA, dyskretne przekształcenie Foruriera), zadania2
T-A-4Zadanie klasyfikacji, miary jakośći klasyfikacji, wyznaczanie krzywej ROC, zadania ilustrujące związki pomiędzy miarami jakośći, klasyfikacja bezregułowa,2
T-A-5Zadanie klasteryzacji, metryki geometryczne oraz miary podobieństwa pomiędzy skupieniami, grupowanie hierarhiczne, algorytm k-środków, zadania powiązane z analizą i działaniem algorytmów grupujących.1
T-A-6Kolokwium podsumowujące1
10
laboratoria
T-L-1Wprowadzenie do środowiska obliczeniowego (Python (numpy, scipy, matplotlib, pandas, sklearn), Matlab (Statistical Toolbox), lub R) oraz wczytywanie danych w różnych formatach.2
T-L-2Metody preprocesingu normalizacja, binaryzacja, atrybutów, selekcja zmiennych2
T-L-3Transformacje ortogonalne oraz analiza składowych głównych, zastosowanie do ekstrakcji cech oraz wizualizacji danych2
T-L-4Wygładzanie danych, interpolacja, jądrowe estymatory funkcji gęstości.2
T-L-5Medody klasyfikacji implementacja wybranej metody (liniowy SVM, regresja logistyczna drzewo decyzyjne lub k-nn) oraz porównaie własnej implementacji z metodami wbudowanym w pakiet scikit-klearn.4
T-L-6Przegląd metod klasyfikacyjnych oraz ocena jakości i czasu działania wybranych metod.2
T-L-7Klasyfikacja wielkolasowa różne strategie: 1:1 1:pozostali,1
T-L-8Regresja zwykła i odporna zagadnienie selekcji zmiennych w modelu liniowym.1
T-L-9Grupowanie danych implementacja algorytmu k-środków. Analiza działania algorytmu, zastosowanie do kwantyzacji wektorowej.1
T-L-10Gurpowanie hierarchiczne, dendorogram porównanie metod grupowania danych. Dobór liczby skupień, miary AIC oraz BIC.1
18
wykłady
T-W-1Modele danych oraz i różne rodzaje danych, rodzaje atrybutów, skale pomiarowe, Dane numeryczne, tabelaryczne, ramki danych, dane tekstowe, obrazy, dźwięki, szeregi czasowe, Załażenia odnośnie danych, i.i.d stacjonarność.2
T-W-2Techniki przetwarzania wstępnego (binaryzacja, normalizacje, skalowanie, braki w danych), Metody selekcji zmiennych oraz ogólne metody ekstrakcji cech z danych, transformacje ortogonalne danych: transformacja Fouriera, transformacja cosinusowa,, PCA, techniki wizualizacji danych.2
T-W-3Duże małe, zbiory danych (big data), zagadnienia związane z przetwarzaniem dużych zbiorów danych (np. zarządzanie pamięcią, paradygmat map-reduce)2
T-W-4Zadania analizy danych (wygładzanie danych, identyfikacja rozkładu, klasyfikacja, regresja, klasteryzacja, wykrywanie zależności, wykrywanie obserwacji odstających, analiza szeregów czasowych), Komponenty typowego zadania analizy danych jak: wybór modelu, funkcja uczące, ocena jakości modelu, sposób zarządzania danymi. Paradygmaty uczenia maszynowego (nadzorowane, nienadzorowane, półnadzorowane, ze wzmocnieniem)2
T-W-5Histogramy, techniki wygładzania danych, Jądrowe metody estymacji funkcji gęstości, estymator Parzena2
T-W-6Metody oceny dokładności modeli (próba ucząca, walidująca, testowa, krosswalidacja, bootstap), miary oceny jakości modeli klasyfikacyjnych (dokładność, czułość, precyzja, F1, krzywa ROC, AUC), regresyjnych (MAE, MSE), funkcja wiarygodności, wiarygodność modelu2
T-W-7Podstawowe modele klasyfikacyjne: klasyfikatory liniowe (lda, regresja logistyczna, liniowy SVM), k-nn, drzewa decyzyjne; Klasyfikacja wieloklasowa.2
T-W-8Zadanie regresji, modele regresyjne: regresja liniowa, regresja odporna liniowa, regresje lokalne, regularyzacja modelu.1
T-W-9Techniki grupowania danych, kwantowanie wektorowe, metryki, miary oceny podobieństwa obiektów i skupień, metoda k-środków, metody hierarchiczne (Warda, najbliżeszego sąsiedztwa), Algorytm EM.2
T-W-10Zaliczenie wykładu1
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach.10
A-A-2Praca własna studenta, przygotowanie się do kolokwium.13
A-A-3Konsultacje2
25
laboratoria
A-L-1Uczestnictwo w zajęciach18
A-L-2Praca własna studenta, przygotowywanie się do zajęć, przygotowywanie sprawozdań30
A-L-3Konsultacje2
50
wykłady
A-W-1Uczestnictwo w wykładach18
A-W-2Praca własna studenta, przygotowanie do zaliczenia30
A-W-3Konsultacje2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny i problemowy
M-2Ćwiczenia przedmiotowe

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ćwiczenia: ocena z kolokwium podsumowującego, ocena pracy na zajęciach Laboratorium: oceny ze sprawozdań, ocena pracy na zajęciach
S-2Ocena podsumowująca: Wykład: ocena z egzaminu Ćwiczenia: wypadkowa z ocen cząstkowych Laboratoria: wypadkowa z ocen cząstkowych

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_C14_W01
Student zna postawowe pojęcia związane z analizą i przetwarzaniem danych, zna i rozróżnia podstawowe zagadnienia i metody analizy danych.
I_1A_W04, I_1A_W03C-1T-W-3, T-W-5, T-W-4, T-W-7, T-W-8, T-W-1, T-W-6, T-W-9, T-W-2M-1S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_C14_U01
Student umie rozpoznawać typy zadań analizy i przetwarzania danych,umie wybrać odpowiednie metody i stosować wybrane narzędzia przy rozwiązywaniu zagadnień związanych z analizą i przetwarzaniem danych.
I_1A_U01, I_1A_U03, I_1A_U05, I_1A_U06C-1T-A-3, T-A-5, T-A-4, T-A-1, T-A-2, T-L-2, T-L-5, T-L-4, T-L-6, T-L-9, T-L-10, T-L-7, T-L-3, T-L-1, T-L-8M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
I_1A_C14_W01
Student zna postawowe pojęcia związane z analizą i przetwarzaniem danych, zna i rozróżnia podstawowe zagadnienia i metody analizy danych.
2,0Uzyskanie z zaliczenia 50% punktów lub mniej
3,0Uzyskanie z zaliczenia powyżej 50% punktów
3,5Uzyskanie z zaliczenia 60%-70% punktów
4,0Uzyskanie z zaliczenia 70%-80% punktów
4,5Uzyskanie z zaliczenia 80%-90% punktów
5,0Uzyskanie z zaliczenia 90%-100% punktów

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
I_1A_C14_U01
Student umie rozpoznawać typy zadań analizy i przetwarzania danych,umie wybrać odpowiednie metody i stosować wybrane narzędzia przy rozwiązywaniu zagadnień związanych z analizą i przetwarzaniem danych.
2,0Uzyskanie z zaliczenia 50% punktów lub mniej
3,0Uzyskanie z zaliczenia powyżej 50% punktów
3,5Uzyskanie z zaliczenia 60%-70% punktów
4,0Uzyskanie z zaliczenia 70%-80% punktów
4,5Uzyskanie z zaliczenia 80%-90% punktów
5,0Uzyskanie z zaliczenia 90%-100% punktów

Literatura podstawowa

  1. Jacek Koronacki, Jan Ćwik, Statystyczne systemy uczące się, PWN, Warszawa, 2005

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Przypomnienie wiadomości z rachunku prewdopodobieństwa: niezależność, tw. Bayesa wzór na prawdopodobieństwo całkowite.2
T-A-2Elementarne pojęcia teorii informacji: entropia, entropia krzyżowa, informacja wzajemna, przyrost informacji, indeks Giniego, nierówność Gibbsa, własności związki z selekcją atrybutów oraz dyskretyzacją.2
T-A-3Techniki przetwarzania wstępnego, transformacje ortogonalne (PCA, dyskretne przekształcenie Foruriera), zadania2
T-A-4Zadanie klasyfikacji, miary jakośći klasyfikacji, wyznaczanie krzywej ROC, zadania ilustrujące związki pomiędzy miarami jakośći, klasyfikacja bezregułowa,2
T-A-5Zadanie klasteryzacji, metryki geometryczne oraz miary podobieństwa pomiędzy skupieniami, grupowanie hierarhiczne, algorytm k-środków, zadania powiązane z analizą i działaniem algorytmów grupujących.1
T-A-6Kolokwium podsumowujące1
10

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie do środowiska obliczeniowego (Python (numpy, scipy, matplotlib, pandas, sklearn), Matlab (Statistical Toolbox), lub R) oraz wczytywanie danych w różnych formatach.2
T-L-2Metody preprocesingu normalizacja, binaryzacja, atrybutów, selekcja zmiennych2
T-L-3Transformacje ortogonalne oraz analiza składowych głównych, zastosowanie do ekstrakcji cech oraz wizualizacji danych2
T-L-4Wygładzanie danych, interpolacja, jądrowe estymatory funkcji gęstości.2
T-L-5Medody klasyfikacji implementacja wybranej metody (liniowy SVM, regresja logistyczna drzewo decyzyjne lub k-nn) oraz porównaie własnej implementacji z metodami wbudowanym w pakiet scikit-klearn.4
T-L-6Przegląd metod klasyfikacyjnych oraz ocena jakości i czasu działania wybranych metod.2
T-L-7Klasyfikacja wielkolasowa różne strategie: 1:1 1:pozostali,1
T-L-8Regresja zwykła i odporna zagadnienie selekcji zmiennych w modelu liniowym.1
T-L-9Grupowanie danych implementacja algorytmu k-środków. Analiza działania algorytmu, zastosowanie do kwantyzacji wektorowej.1
T-L-10Gurpowanie hierarchiczne, dendorogram porównanie metod grupowania danych. Dobór liczby skupień, miary AIC oraz BIC.1
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Modele danych oraz i różne rodzaje danych, rodzaje atrybutów, skale pomiarowe, Dane numeryczne, tabelaryczne, ramki danych, dane tekstowe, obrazy, dźwięki, szeregi czasowe, Załażenia odnośnie danych, i.i.d stacjonarność.2
T-W-2Techniki przetwarzania wstępnego (binaryzacja, normalizacje, skalowanie, braki w danych), Metody selekcji zmiennych oraz ogólne metody ekstrakcji cech z danych, transformacje ortogonalne danych: transformacja Fouriera, transformacja cosinusowa,, PCA, techniki wizualizacji danych.2
T-W-3Duże małe, zbiory danych (big data), zagadnienia związane z przetwarzaniem dużych zbiorów danych (np. zarządzanie pamięcią, paradygmat map-reduce)2
T-W-4Zadania analizy danych (wygładzanie danych, identyfikacja rozkładu, klasyfikacja, regresja, klasteryzacja, wykrywanie zależności, wykrywanie obserwacji odstających, analiza szeregów czasowych), Komponenty typowego zadania analizy danych jak: wybór modelu, funkcja uczące, ocena jakości modelu, sposób zarządzania danymi. Paradygmaty uczenia maszynowego (nadzorowane, nienadzorowane, półnadzorowane, ze wzmocnieniem)2
T-W-5Histogramy, techniki wygładzania danych, Jądrowe metody estymacji funkcji gęstości, estymator Parzena2
T-W-6Metody oceny dokładności modeli (próba ucząca, walidująca, testowa, krosswalidacja, bootstap), miary oceny jakości modeli klasyfikacyjnych (dokładność, czułość, precyzja, F1, krzywa ROC, AUC), regresyjnych (MAE, MSE), funkcja wiarygodności, wiarygodność modelu2
T-W-7Podstawowe modele klasyfikacyjne: klasyfikatory liniowe (lda, regresja logistyczna, liniowy SVM), k-nn, drzewa decyzyjne; Klasyfikacja wieloklasowa.2
T-W-8Zadanie regresji, modele regresyjne: regresja liniowa, regresja odporna liniowa, regresje lokalne, regularyzacja modelu.1
T-W-9Techniki grupowania danych, kwantowanie wektorowe, metryki, miary oceny podobieństwa obiektów i skupień, metoda k-środków, metody hierarchiczne (Warda, najbliżeszego sąsiedztwa), Algorytm EM.2
T-W-10Zaliczenie wykładu1
18

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach.10
A-A-2Praca własna studenta, przygotowanie się do kolokwium.13
A-A-3Konsultacje2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach18
A-L-2Praca własna studenta, przygotowywanie się do zajęć, przygotowywanie sprawozdań30
A-L-3Konsultacje2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach18
A-W-2Praca własna studenta, przygotowanie do zaliczenia30
A-W-3Konsultacje2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięI_1A_C14_W01Student zna postawowe pojęcia związane z analizą i przetwarzaniem danych, zna i rozróżnia podstawowe zagadnienia i metody analizy danych.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W04Ma wiedzę w zakresie programowania systemów komputerowych, zna podstawowe paradygmaty programowania i wiodące języki programowania.
I_1A_W03Posiada poszerzoną wiedzę w zakresie metod przechowywania, przetwarzania, przesyłania i analizy danych oraz modelowania systemów umożliwiającą rozwiązywanie rzeczywistych problemów obliczeniowych.
Cel przedmiotuC-1Zasadniczym celem przedmiotu jest zaznajomienie studenta z podstawowymi technikami analizy i przetwarzania różnego rodzaju danych. Celem dodatkowym jest zapoznanie praktyczne studenta z wybranym środowiiskiem analizy danych do wyboru rozważane mogą być środowiska analizy danych w językach Python, Matlab lub R.
Treści programoweT-W-3Duże małe, zbiory danych (big data), zagadnienia związane z przetwarzaniem dużych zbiorów danych (np. zarządzanie pamięcią, paradygmat map-reduce)
T-W-5Histogramy, techniki wygładzania danych, Jądrowe metody estymacji funkcji gęstości, estymator Parzena
T-W-4Zadania analizy danych (wygładzanie danych, identyfikacja rozkładu, klasyfikacja, regresja, klasteryzacja, wykrywanie zależności, wykrywanie obserwacji odstających, analiza szeregów czasowych), Komponenty typowego zadania analizy danych jak: wybór modelu, funkcja uczące, ocena jakości modelu, sposób zarządzania danymi. Paradygmaty uczenia maszynowego (nadzorowane, nienadzorowane, półnadzorowane, ze wzmocnieniem)
T-W-7Podstawowe modele klasyfikacyjne: klasyfikatory liniowe (lda, regresja logistyczna, liniowy SVM), k-nn, drzewa decyzyjne; Klasyfikacja wieloklasowa.
T-W-8Zadanie regresji, modele regresyjne: regresja liniowa, regresja odporna liniowa, regresje lokalne, regularyzacja modelu.
T-W-1Modele danych oraz i różne rodzaje danych, rodzaje atrybutów, skale pomiarowe, Dane numeryczne, tabelaryczne, ramki danych, dane tekstowe, obrazy, dźwięki, szeregi czasowe, Załażenia odnośnie danych, i.i.d stacjonarność.
T-W-6Metody oceny dokładności modeli (próba ucząca, walidująca, testowa, krosswalidacja, bootstap), miary oceny jakości modeli klasyfikacyjnych (dokładność, czułość, precyzja, F1, krzywa ROC, AUC), regresyjnych (MAE, MSE), funkcja wiarygodności, wiarygodność modelu
T-W-9Techniki grupowania danych, kwantowanie wektorowe, metryki, miary oceny podobieństwa obiektów i skupień, metoda k-środków, metody hierarchiczne (Warda, najbliżeszego sąsiedztwa), Algorytm EM.
T-W-2Techniki przetwarzania wstępnego (binaryzacja, normalizacje, skalowanie, braki w danych), Metody selekcji zmiennych oraz ogólne metody ekstrakcji cech z danych, transformacje ortogonalne danych: transformacja Fouriera, transformacja cosinusowa,, PCA, techniki wizualizacji danych.
Metody nauczaniaM-1Wykład informacyjny i problemowy
Sposób ocenyS-2Ocena podsumowująca: Wykład: ocena z egzaminu Ćwiczenia: wypadkowa z ocen cząstkowych Laboratoria: wypadkowa z ocen cząstkowych
Kryteria ocenyOcenaKryterium oceny
2,0Uzyskanie z zaliczenia 50% punktów lub mniej
3,0Uzyskanie z zaliczenia powyżej 50% punktów
3,5Uzyskanie z zaliczenia 60%-70% punktów
4,0Uzyskanie z zaliczenia 70%-80% punktów
4,5Uzyskanie z zaliczenia 80%-90% punktów
5,0Uzyskanie z zaliczenia 90%-100% punktów
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięI_1A_C14_U01Student umie rozpoznawać typy zadań analizy i przetwarzania danych,umie wybrać odpowiednie metody i stosować wybrane narzędzia przy rozwiązywaniu zagadnień związanych z analizą i przetwarzaniem danych.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U01Potrafi wykrywać związki i zależności w procesach zachodzących w systemach rzeczywistych i na tej podstawie tworzyć modele komputerowe i przeprowadzać ich symulacje.
I_1A_U03Potrafi pozyskiwać, przesyłać, przetwarzać dane, podsumowywać wyniki eksperymentów empirycznych, dokonywać interpretacji uzyskanych wyników i formułować wynikające z nich wnioski.
I_1A_U05Potrafi rozwiązywać zadania i problemy informatyczne z wykorzystaniem metod matematyki obliczeniowej w szczególności stosując techniki analityczne lub symulacyjne.
I_1A_U06Potrafi rozwiązywać podstawowe problemy algorytmiczne z uwzględnieniem ich złożoności posługując się kluczowymi językami programowania.
Cel przedmiotuC-1Zasadniczym celem przedmiotu jest zaznajomienie studenta z podstawowymi technikami analizy i przetwarzania różnego rodzaju danych. Celem dodatkowym jest zapoznanie praktyczne studenta z wybranym środowiiskiem analizy danych do wyboru rozważane mogą być środowiska analizy danych w językach Python, Matlab lub R.
Treści programoweT-A-3Techniki przetwarzania wstępnego, transformacje ortogonalne (PCA, dyskretne przekształcenie Foruriera), zadania
T-A-5Zadanie klasteryzacji, metryki geometryczne oraz miary podobieństwa pomiędzy skupieniami, grupowanie hierarhiczne, algorytm k-środków, zadania powiązane z analizą i działaniem algorytmów grupujących.
T-A-4Zadanie klasyfikacji, miary jakośći klasyfikacji, wyznaczanie krzywej ROC, zadania ilustrujące związki pomiędzy miarami jakośći, klasyfikacja bezregułowa,
T-A-1Przypomnienie wiadomości z rachunku prewdopodobieństwa: niezależność, tw. Bayesa wzór na prawdopodobieństwo całkowite.
T-A-2Elementarne pojęcia teorii informacji: entropia, entropia krzyżowa, informacja wzajemna, przyrost informacji, indeks Giniego, nierówność Gibbsa, własności związki z selekcją atrybutów oraz dyskretyzacją.
T-L-2Metody preprocesingu normalizacja, binaryzacja, atrybutów, selekcja zmiennych
T-L-5Medody klasyfikacji implementacja wybranej metody (liniowy SVM, regresja logistyczna drzewo decyzyjne lub k-nn) oraz porównaie własnej implementacji z metodami wbudowanym w pakiet scikit-klearn.
T-L-4Wygładzanie danych, interpolacja, jądrowe estymatory funkcji gęstości.
T-L-6Przegląd metod klasyfikacyjnych oraz ocena jakości i czasu działania wybranych metod.
T-L-9Grupowanie danych implementacja algorytmu k-środków. Analiza działania algorytmu, zastosowanie do kwantyzacji wektorowej.
T-L-10Gurpowanie hierarchiczne, dendorogram porównanie metod grupowania danych. Dobór liczby skupień, miary AIC oraz BIC.
T-L-7Klasyfikacja wielkolasowa różne strategie: 1:1 1:pozostali,
T-L-3Transformacje ortogonalne oraz analiza składowych głównych, zastosowanie do ekstrakcji cech oraz wizualizacji danych
T-L-1Wprowadzenie do środowiska obliczeniowego (Python (numpy, scipy, matplotlib, pandas, sklearn), Matlab (Statistical Toolbox), lub R) oraz wczytywanie danych w różnych formatach.
T-L-8Regresja zwykła i odporna zagadnienie selekcji zmiennych w modelu liniowym.
Metody nauczaniaM-2Ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena formująca: Ćwiczenia: ocena z kolokwium podsumowującego, ocena pracy na zajęciach Laboratorium: oceny ze sprawozdań, ocena pracy na zajęciach
S-2Ocena podsumowująca: Wykład: ocena z egzaminu Ćwiczenia: wypadkowa z ocen cząstkowych Laboratoria: wypadkowa z ocen cząstkowych
Kryteria ocenyOcenaKryterium oceny
2,0Uzyskanie z zaliczenia 50% punktów lub mniej
3,0Uzyskanie z zaliczenia powyżej 50% punktów
3,5Uzyskanie z zaliczenia 60%-70% punktów
4,0Uzyskanie z zaliczenia 70%-80% punktów
4,5Uzyskanie z zaliczenia 80%-90% punktów
5,0Uzyskanie z zaliczenia 90%-100% punktów