Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (N1)
Sylabus przedmiotu Podstawy sztucznej inteligencji:
Informacje podstawowe
Kierunek studiów | Zarządzanie i inżynieria produkcji | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Podstawy sztucznej inteligencji | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Zespół Dydaktyczny | ||
Nauczyciel odpowiedzialny | Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl> | ||
Inni nauczyciele | Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>, Marta Krawczyk <Marta.Krawczyk@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza: matematyka, metody numeryczne, struktury danych i algoryty |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zdobycie widzy dotyczącej stosowanych w praktyce inżynierskiej metod sztucznej inteligencji. Umiejętność rozpoznania problemu i skojarzenie z możliwą do rozwiązania problemu metodą. |
C-2 | Zdobycie umiejętności praktycznej analizy szerokiego spektrum problemów rozwiązywanych metodami sztucznej inteligencji. Zaznajomienie z możliwościami dostępnych na rynku aplikacji sztucznej inteligencji wykorzystywanych w zadaniach demonstracyjnych i praktycznych. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Opracowanie modelu sterownika rozmytego. Modelowanie systemów wnioskowania rozmytego z zastosowaniem programu komputerowego. Dobór struktury modelu wnioskowania. Budowa bary reguł lingwistycznych. Projekt sterowania systemem produkcyjnym z zastosowaniem zbiorów rozmytych i sztucznych sieci neuronowych. Wykorzystanie algorytmów genetycznych do rozwiązywania przykładowych problemów produkcyjnych. | 8 |
8 | ||
wykłady | ||
T-W-1 | Definicje i klasyfikacja metod sztucznej inteligencji. Rozwój metod sztucznej inteligencji. Test Turinga. Zbiory rozmyte. Podstawy budowy systemów Fuzzy Logic. Bazy reguł lingwistycznych. Metoda wnioskowania. Przykłady zastosowań logiki rozmytej do sterowania procesami produkcyjnymi. Algorytmy ewolucyjne i genetyczne, podstawowe pojęcia, operatory ewolucyjne selekcji, krzyżowania i mutacji, zasady działania. Przykłady zastosowań algorytmów ewolucyjnych. Sztuczne sieci neuronowe. Wprowadzenie do zagadnienia. Sieć typu perceptron prosty. Uczenie sztucznych sieci neuronowych. Przykłady zastosowań sztucznych sieci neuronowych. | 8 |
8 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 8 |
A-L-2 | Wkład własny studenta | 29 |
37 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 8 |
A-W-2 | Wkład własny studenta | 29 |
37 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny-prezentacja. |
M-2 | Metoda przypadków. Omówienie przykładów rzeczywistych i ich dyskusja. |
M-3 | Dyskusja dydaktyczna. Rozważania problemu silnej sztucznej inteligencji. |
M-4 | Ćwiczenia laboratoryjne - samodzielna praca z oprogramowaniem komputerowym. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Wykład - egzamin pisemny z zagadnień omawianych na wykładzie. Forma otwartycz pytań i zadań do rozwiązania. |
S-2 | Ocena formująca: Laboratoria - sprawdziany z bieżącej tematyki laboratoriów. |
S-3 | Ocena formująca: Laboratoria - ocena sprawozdań i wykonanych na zajęciach zadań. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_C19_W01 Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji. | ZIIP_1A_W03, ZIIP_1A_W14 | — | — | C-1 | T-W-1 | M-3, M-2, M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_C19_U01 Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów. | ZIIP_1A_U03, ZIIP_1A_U04, ZIIP_1A_U14, ZIIP_1A_U16 | — | — | C-2 | T-L-1 | M-4 | S-3, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIIP_1A_C19_K01 Właściwa postawa i motywacja do pracy w grupie. | ZIIP_1A_K03 | — | — | C-1 | T-W-1, T-L-1 | M-2, M-1 | S-3 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_C19_W01 Student potrafi rozpoznawać problemy rozwiązywane metodami sztucznej inteligencji. Potrafi wybrać metodę i objaśnić jakie są jej walory i wady. Potrafi podsumować osiągnięcia ze sztucznej inteligencji. | 2,0 | |
3,0 | Student zna podstawy rozwiązywania problemów metodami sztucznej inteligencji. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_C19_U01 Student zdobędzie umiejętność analizowania rozwiązywanego problemu, dobrania odpowiednich metod i narzędzi potrzebnych do jego rozwiązania, zaplanowania i wykonania eksperymentów z użyciem narzędzi, interpretacji wyników eksperymentów. | 2,0 | |
3,0 | Student potrafi zastosować podstawowe metody sztucznej inteligencji. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ZIIP_1A_C19_K01 Właściwa postawa i motywacja do pracy w grupie. | 2,0 | Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań. |
3,0 | Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach | |
3,5 | Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach. | |
4,0 | Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji. | |
4,5 | Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji. | |
5,0 | Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych. |
Literatura podstawowa
- Rusdell S, Norvig P., Artificial Intelligence a Modern Approach, Prentice-Hall, 1995
- Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, W-wa, Łódź, 1997
- Knosala R., Zastosowanie metod sztucznej inteligencji w inżynierii produkcji, WNT, Warszawa, 2002
Literatura dodatkowa
- Goldberg D.E., Algorytmy genetyczne i ich zastosowanie, WNT, Warszawa, 1995
- Tadeusiewicz R., Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa, 1993, II