Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)
specjalność: Engineering Structures
Sylabus przedmiotu Structural Dynamics:
Informacje podstawowe
Kierunek studiów | Civil Engineering | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Structural Dynamics | ||
Specjalność | Engineering Structures | ||
Jednostka prowadząca | Katedra Teorii Konstrukcji | ||
Nauczyciel odpowiedzialny | Radosław Iwankiewicz <riwankiewicz@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | egzamin | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Mathematics courses pertinent to BSc in Engineering degree course |
W-2 | Structural Mechanics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems. |
C-2 | Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems. |
C-3 | Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations. |
C-4 | Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency. | 2 |
T-P-2 | Example problems: derivation of equations of motion of MDOF systems. | 3 |
T-P-3 | Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors. | 5 |
T-P-4 | Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation. | 1 |
T-P-5 | Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames. | 4 |
15 | ||
wykłady | ||
T-W-1 | Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition. | 3 |
T-W-2 | Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations. | 6 |
T-W-3 | Lagrange’s equations. | 2 |
T-W-4 | Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation. | 8 |
T-W-5 | Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions. | 3 |
T-W-6 | Stability of equilibrium positions. | 3 |
T-W-7 | Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach). | 5 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Attending the example classes. | 15 |
A-P-2 | Home assignments (two major assignments). | 2 |
A-P-3 | Private (home) study. | 2 |
A-P-4 | Consultances | 1 |
20 | ||
wykłady | ||
A-W-1 | Attending the lectures. | 30 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Lectures. |
M-2 | Solving problems and home assignments. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Final exam mark. |
S-2 | Ocena formująca: Assessment of home assignments. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_A/C/04_W01 Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems. | B-A_2A_W01 | — | — | C-1, C-2, C-3, C-4 | T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_A/C/04_U01 Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems. | B-A_2A_U01 | — | — | C-1, C-2, C-3, C-4 | T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
B-A_2A_A/C/04_K01 Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines. | B-A_2A_K01 | — | — | C-1, C-2, C-3, C-4 | T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5 | M-1, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_A/C/04_W01 Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems. | 2,0 | |
3,0 | Student has a good knowledge of mathematical tools necessary in analysis of vibrations and elastic stability. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_A/C/04_U01 Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems. | 2,0 | |
3,0 | Student shows a capability to solve numerically the equations occurring in problems of vibrations and elastic stability and to interpret the results. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
B-A_2A_A/C/04_K01 Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines. | 2,0 | |
3,0 | Student is able to devise the working plan (schedule) for an undertaken research/computational project. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- W.C. Hurty and M.F. Rubinstein, Dynamics of Structures, Englewood Cliffs: Prentice Hall, 1964
- S.S. Rao, Mechanical Vibrations, Addison-Wesley, 1995, 3rd edition
- C.F. Beards, Engineering Vibration Analysis with Application to Control Systems, Edward Arnold, 1995
- M. Geradin, D.Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics, J. Wiley, 1994
Literatura dodatkowa
- A. Jabłonka, R. Iwankiewicz, Moment equations and cumulant-neglect closure techniques for non-linear dynamic systems under renewal impulse process excitations, Probabilistic Engineering Mechanics, Elsevier, 2020, Vol. 60, pp. 1-11
- R. Iwankiewicz, Dynamical mechanical systems under random impulses, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1995, Vol. 36, ISBN 9810222815, (161 pages)