Wydział Budownictwa i Inżynierii Środowiska - Inżynieria środowiska (S1)
Sylabus przedmiotu Fluid mechanics-2:
Informacje podstawowe
Kierunek studiów | Inżynieria środowiska | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Fluid mechanics-2 | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Ogrzewnictwa, Wentylacji i Ciepłownictwa | ||
Nauczyciel odpowiedzialny | Robert Mańko <Robert.Manko@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 13 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Mastered knowledge in mathematics, physics, and hydrology from middle school. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Understanding phenomena in the field of open channel hydraulics |
C-2 | Knowledge of the phenomenon of filtration and methods of its description. |
C-3 | Fundamentals of sediment transport and the spread of pollutants. |
C-4 | Basic issues of gas flow and the operation of ventilation systems. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Problems calculating the flow and other parameters of fluid motion in open channels using the Chezy equation. | 3 |
T-A-2 | Problems determining the consumption curve. | 2 |
T-A-3 | Problems related to stream energy, flow regimes, and hydraulic jump. | 2 |
T-A-4 | Calculating the water surface profile, bridge openings, and upstream water surface profile. | 2 |
T-A-5 | Unsteady rapidly varying flow - analysis of wave types, analysis of the operation of the sluice system - balancing chamber. | 2 |
T-A-6 | Problem of unsteady slow-varying flow - methods of approximation and solving Saint-Venant type systems. | 2 |
T-A-7 | Calculating gas flows in pipelines. | 1 |
T-A-8 | Final test | 1 |
15 | ||
wykłady | ||
T-W-1 | Critical flow | 1 |
T-W-2 | Steady flow in open channels | 2 |
T-W-3 | Unsteady flow in open channels | 1 |
T-W-4 | Flow through openings | 2 |
T-W-5 | Flow over weirs | 2 |
T-W-6 | Culverts and bridge openings | 1 |
T-W-7 | Hydrodynamic forces and reactions | 2 |
T-W-8 | Groundwater flow | 1 |
T-W-9 | Similarity and model studies | 1 |
T-W-10 | Fundamental issues in compressible gas dynamics | 1 |
T-W-11 | Final test | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Attendance in classes | 15 |
A-A-2 | Independent completion of tasks sent via the Internet | 3 |
A-A-3 | Preparation for the test | 5 |
A-A-4 | Consultations | 2 |
25 | ||
wykłady | ||
A-W-1 | Attendance in classes | 15 |
A-W-2 | Preparation for test | 33 |
A-W-3 | Consultations | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Problem-oriented lecture based on computerized audio-visual presentations of topics and discussions of issues on the board. |
M-2 | Computer simulations of some discussed issues (operation of hydrotechnical structures, wave transformation, simulation of unsteady flow velocity fields). |
M-3 | Auditory exercises: Classes utilizing audio-visual presentations of example solved problems and task content to be solved by students on the board. |
M-4 | Auditory exercises: Online transfer of PowerPoint files with content of solved problems and tasks for individual completion by students at home. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Control questions from the material covered in the lecture as part of quizzes during auditory exercises. |
S-2 | Ocena formująca: Assessment of individuals during auditory exercises, including the evaluation of individual tasks and tasks solved on the board. |
S-3 | Ocena podsumowująca: Two quizzes during auditory exercises during the semester and a passing exam for students who did not receive positive grades in the quizzes during the semester. |
S-4 | Ocena podsumowująca: Final exam covering the material taught during the semester in Fluid Mechanics. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_1A_S1/B/06-2a_W01 Understands the phenomenon of unsteady flow of real fluids in laminar and turbulent motion and is familiar with the form of the Navier-Stokes and Reynolds equations. Understands simplified descriptions of fluid motion in open channels (equations, generalized Bernoulli's equation, water surface profile equation). Grasps issues related to stream energy, critical flow, hydraulic jump, and is versed in methods for calculating bridge openings and upstream water surface profiles. Is acquainted with fundamental concepts related to unsteady water flow in channels and rivers (translational wave, flood wave, storm surge). Is familiar with methods and models for calculating these issues in open channel networks based on Saint-Venant equations. Understands the phenomenon of filtration in soils and knows the models describing filtration through dams and levees. Possesses basic knowledge of sediment transport processes and the stability analysis of streambeds. Has fundamental information about the spread of pollutants in rivers and reservoirs. Has mastered basic principles of gas dynamics (Bernoulli's equation for gases) and is familiar with methods for calculating gas flow in pipelines and ventilation ducts. | IS_1A_W01, IS_1A_W02, IS_1A_W07 | — | — | C-2, C-3, C-4, C-1 | T-W-1, T-W-5, T-W-6, T-W-3, T-W-2, T-A-1, T-W-4, T-A-4, T-A-2, T-W-11, T-A-3, T-A-8, T-A-6, T-A-5, T-W-7, T-A-7 | M-2, M-4, M-3, M-1 | S-1, S-4, S-3, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_1A_S1/B/06-2a_U01 Is able to plan and conduct experiments in the field of fluid mechanics, analyze their results using computer techniques, interpret the obtained results, and draw conclusions. Can apply hydraulic equations to solve engineering problems related to open channel flows (determining discharge, filling, water surface profile, etc.). Can analyze issues related to unsteady fluid dynamics, formulate engineering problems in this field, and use simple mathematical models to solve them. Can analyze the significance of filtration flow in soil, including basic equations, and apply them in simple cases to determine filtration rates. | IS_1A_U02, IS_1A_U04, IS_1A_U05 | — | — | C-2, C-1, C-4, C-3 | T-W-7, T-A-3, T-A-7, T-W-5, T-A-6, T-W-3, T-A-1, T-W-1, T-W-8, T-W-6, T-A-5, T-W-4, T-W-2, T-A-2, T-A-4 | M-2, M-3, M-1, M-4 | S-3, S-2, S-4 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_1A_S1/B/06-2a_K01 Is ready to determine the importance of interactions between fluids and solid bodies in the process of constructing and operating engineering structures and assess the impact of fluid flows on solid elements of the environment (terrain surfaces, riverbanks, etc.). | IS_1A_K01, IS_1A_K02 | — | — | C-1, C-2, C-4, C-3 | T-A-8, T-W-11 | M-4, M-2, M-3, M-1 | S-1, S-4, S-3, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IS_1A_S1/B/06-2a_W01 Understands the phenomenon of unsteady flow of real fluids in laminar and turbulent motion and is familiar with the form of the Navier-Stokes and Reynolds equations. Understands simplified descriptions of fluid motion in open channels (equations, generalized Bernoulli's equation, water surface profile equation). Grasps issues related to stream energy, critical flow, hydraulic jump, and is versed in methods for calculating bridge openings and upstream water surface profiles. Is acquainted with fundamental concepts related to unsteady water flow in channels and rivers (translational wave, flood wave, storm surge). Is familiar with methods and models for calculating these issues in open channel networks based on Saint-Venant equations. Understands the phenomenon of filtration in soils and knows the models describing filtration through dams and levees. Possesses basic knowledge of sediment transport processes and the stability analysis of streambeds. Has fundamental information about the spread of pollutants in rivers and reservoirs. Has mastered basic principles of gas dynamics (Bernoulli's equation for gases) and is familiar with methods for calculating gas flow in pipelines and ventilation ducts. | 2,0 | |
3,0 | Has basic knowledge in the field of fluid mechanics. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IS_1A_S1/B/06-2a_U01 Is able to plan and conduct experiments in the field of fluid mechanics, analyze their results using computer techniques, interpret the obtained results, and draw conclusions. Can apply hydraulic equations to solve engineering problems related to open channel flows (determining discharge, filling, water surface profile, etc.). Can analyze issues related to unsteady fluid dynamics, formulate engineering problems in this field, and use simple mathematical models to solve them. Can analyze the significance of filtration flow in soil, including basic equations, and apply them in simple cases to determine filtration rates. | 2,0 | |
3,0 | Is able to perform basic calculations in the field of fluid mechanics. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IS_1A_S1/B/06-2a_K01 Is ready to determine the importance of interactions between fluids and solid bodies in the process of constructing and operating engineering structures and assess the impact of fluid flows on solid elements of the environment (terrain surfaces, riverbanks, etc.). | 2,0 | |
3,0 | Has appropriate social skills. Can work effectively in a group. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Michael Belevich, Classical Fluid Mechanics, Bentham Science Publishers, 2017
- Eric Lauga, Fluid Mechanics: A Very Short Introduction, Tantor Audio, 2022, Audiobook
- Robert A. Granger, Fluid Mechanics, Dover Publications, 1995
Literatura dodatkowa
- Frank White, Fluid Mechanics, McGraw Hill, 2015, 8