Wydział Inżynierii Mechanicznej i Mechatroniki - Mechatronika (N2)
Sylabus przedmiotu Analiza i optymalizacja konstrukcji urządzeń mechatronicznych:
Informacje podstawowe
Kierunek studiów | Mechatronika | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Analiza i optymalizacja konstrukcji urządzeń mechatronicznych | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Mechatroniki | ||
Nauczyciel odpowiedzialny | Daniel Jastrzębski <Daniel.Jastrzebski@zut.edu.pl> | ||
Inni nauczyciele | Michał Dolata <Michal.Dolata@zut.edu.pl>, Daniel Jastrzębski <Daniel.Jastrzebski@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość podstawowych zagadnień z zakresu mechaniki, wytrzymałości materiałów oraz podstaw konstrukcji maszyn. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Uzyskanie wiedzy o metodach analitycznego wyznaczania właściwości mechanicznych urządzeń mechatronicznych. |
C-2 | Uświadomienie roli i znaczenia analiz konstrukcji urządzeń mechatronicznych w procesach ich projektowania. |
C-3 | Uzyskanie praktycznych umiejętności modelowania konstrukcji urządzeń mechatronicznych metodą elementów skończonych. |
C-4 | Uzyskanie umiejętności optymalizowania rozwiązań konstrukcyjnych urządzeń mechatronicznych w procesie ich projektowania. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Modelowanie fizyczne i matematyczne wybranych podzespołów urządzeń mechatronicznych metodą elementów skończonych. | 3 |
T-L-2 | Przeprowadzanie analizy i dokonywanie oceny właściwości mechanicznych podzespołów urządzeń mechatronicznych. | 3 |
T-L-3 | Optymalizacja rozwiązań konstrukcyjnych podzespołów urządzeń mechatronicznych ze względu na wytypowane wskaźniki oceny ich właściwości. | 3 |
9 | ||
wykłady | ||
T-W-1 | Analiza konstrukcji w projektowaniu urządzeń mechatronicznych. Rola symulacji komputerowych w projektowaniu urządzeń mechatronicznych. | 2 |
T-W-2 | Zasady i prawa mechaniki w modelowaniu konstrukcji urządzeń mechatronicznych. Fizyczne i matematyczne modele konstrukcji urządzeń mechatronicznych. | 10 |
T-W-3 | Koncepcja modelowania metodą elementów skończonych. Schematy realizacji i techniki opracowania modeli w metodzie elementów skończonych. Przykłady analizy właściwości mechanicznych urządzeń mechatronicznych. | 4 |
T-W-4 | Problematyka optymalizacji w projektowaniu urządzeń mechatronicznych. Przykłady optymalizacji konstrukcji urządzeń mechatronicznych. | 2 |
18 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 9 |
A-L-2 | przygotowanie do zajęć | 11 |
A-L-3 | przygotowanie do zaliczenia | 5 |
25 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 18 |
A-W-2 | konsultacje | 8 |
A-W-3 | analiza treści wykładów i studiowanie literatury | 10 |
A-W-4 | przygotowanie do egzaminu | 14 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład z użyciem prezentacji multimedialnych. |
M-2 | Ćwiczenia laboratoryjne. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Ocena z egzaminu, weryfikująca stopień opanowania treści przedmiotowych przez studenta. |
S-2 | Ocena formująca: Ocena z realizacji poszczególnych ćwiczeń laboratoryjnych. |
S-3 | Ocena podsumowująca: Uśredniona ocena z zaliczonych ćwiczeń laboratoryjnych. |
S-4 | Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_C03_W01 Student powinien posiąść wiedzę o roli analiz obliczeniowych i optymalizacji w budowie urządzeń mechatronicznych. Powinien poznać podstawowe metody analizy właściwości urządzeń mechatronicznych. Powinien zyskać wiedzę o formułowaniu i rozwiązaniu zadań dotyczących optymalizacji konstrukcji urządzeń mechatronicznych ze względu na oceny ich właściwości statycznych i dynamicznych. | ME_2A_W07, ME_2A_W01, ME_2A_W02, ME_2A_W03 | — | — | C-1 | T-W-2, T-W-1, T-W-3, T-W-4 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_C03_U01 Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych urządzeń mechatronicznych metodą elementów skończonych. Zyskuje umiejętność obsługi oprogramowania tej metody. Potrafi interpretować wyniki analizy statycznych i dynamicznych. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń. | ME_2A_U07, ME_2A_U09, ME_2A_U11, ME_2A_U16, ME_2A_U20 | — | — | C-3, C-4 | T-L-2, T-L-3, T-L-1 | M-2 | S-2, S-3 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ME_2A_C03_K01 Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej. | ME_2A_K01, ME_2A_K02, ME_2A_K03 | — | — | C-2 | T-L-2, T-L-3 | M-1, M-2 | S-4 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_C03_W01 Student powinien posiąść wiedzę o roli analiz obliczeniowych i optymalizacji w budowie urządzeń mechatronicznych. Powinien poznać podstawowe metody analizy właściwości urządzeń mechatronicznych. Powinien zyskać wiedzę o formułowaniu i rozwiązaniu zadań dotyczących optymalizacji konstrukcji urządzeń mechatronicznych ze względu na oceny ich właściwości statycznych i dynamicznych. | 2,0 | Student nie opanował niezbędnej wiedzy z zakresu przedmiotu. |
3,0 | Student opanował niezbędną wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy tylko w sposób oczywisty. | |
3,5 | Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony. | |
4,0 | Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony. Potrafi zaplanować badania w celu uzyskania dodatkowych informacji o badanym obiekcie. | |
4,5 | Student opanował rozszerzoną wiedzę z zakresu przedmiotu, potrafi określić zakres badań niezbędnych w optymalizacji. | |
5,0 | Student opanował rozszerzoną wiedzę z zakresu przedmiotu. Potrafi zaplanować całkowity zakres badań niezbędnych w procesie optymalizacji. Rozumie ograniczenia i zna obszary stosowania nabytej wiedzy. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_C03_U01 Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych urządzeń mechatronicznych metodą elementów skończonych. Zyskuje umiejętność obsługi oprogramowania tej metody. Potrafi interpretować wyniki analizy statycznych i dynamicznych. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń. | 2,0 | Student nie potrafi wyjaśnić sensu i celu działań wymaganych przy modelowaniu, poprawnie rozwiązywać zadań dotyczących modelowania konstrukcji. Nie umie interpretować i oceniać wyników analiz. |
3,0 | Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie zinterpretować wyniki analiz tylko w sposób oczywisty. | |
3,5 | Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować wyniki analiz. | |
4,0 | Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować i ocenić wyniki analiz. | |
4,5 | Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i ocenić wyniki analiz. | |
5,0 | Student dogłębnie potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, bardzo sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i kreatywnie ocenić wyniki analiz. Rozumie ograniczenia metod analiz. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ME_2A_C03_K01 Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej. | 2,0 | |
3,0 | Student rozumie konieczność ciągłego rozwoju osobistego i docenia efektywność pracy zespołowej. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Kruszewski J. i inni, Metoda elementów skończonych w dynamice konstrukcji, Arkady, Warszawa, 1984
Literatura dodatkowa
- Shahin R Nadehi, John R Steffen, Analysis of Machine Elements Using SOLIDWORKS Simulation 2017, SDC Publications, Mission, KS, United States, 2017
- Paul Kurowski, Engineering Analysis with SOLIDWORKS Simulation 2018, SDC Publications, Mission, KS, United States, 2018