Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Nauk o Żywności i Rybactwa - Technologia żywności i żywienie człowieka (S1)

Sylabus przedmiotu Maszynoznawstwo przemysłu spożywczego:

Informacje podstawowe

Kierunek studiów Technologia żywności i żywienie człowieka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Maszynoznawstwo przemysłu spożywczego
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Towaroznawstwa, Oceny Jakości, Inżynierii Procesowej i Żywienia Człowieka
Nauczyciel odpowiedzialny Przemysław Czerniejewski <Przemyslaw.Czerniejewski@zut.edu.pl>
Inni nauczyciele Jerzy Balejko <Jerzy.Balejko@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 30 2,00,50zaliczenie
wykładyW1 30 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza z geometrii, algebry, fizyki , chemii
W-2Umiejętność posługiwania się przyrządami kreślarskimi

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstaw szeroko rozumianej "wiedzy inżynierskiej".
C-2Zapoznanie studentów z budową i zasadami działania wybranych grup maszyn przemysłu spożywczego.
C-3Ukształtowanie podstawowych umiejętności konstruowania elementów maszyn.
C-4Praktyczne opanowanie umiejętności równoczesnego wykorzystania wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne2
T-L-2Przekroje części maszyn4
T-L-3Rzuty aksonometryczne4
T-L-4Wymiarowanie elementów maszyn4
T-L-5Praca w środowisku AutoCad8
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.2
T-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.2
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.2
T-L-9Zaliczenie ćwiczeń2
30
wykłady
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego2
T-W-2Przekroje i rzuty aksonometryczne części maszyn2
T-W-3Wymiarowanie elementów maszyn2
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn2
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego2
T-W-6Ogólna budowa maszyn2
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.2
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).10
T-W-9Maszyny i urządzenia do rozdzielania materiałów niejednorodnych.2
T-W-10Maszyny i urządzenia do wytłaczania cieczy z surowców, nadawania kształtu i ekstruzji, rozpylania cieczy, mieszania, aglomeracji.2
T-W-11Maszyny i urządzenia do transportu surowców i produktów2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach30
A-L-2przygotowanie się do zajęć11
A-L-3konsulacje z prowadzącym1
A-L-4studiowanie literatury5
A-L-5Przygotowanie sprawozdania z ćwiczeń3
50
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2studiowanie literatury4
A-W-3przygotowanie do egzaminu14
A-W-4Egzamin2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
S-3Ocena podsumowująca: Egzamin.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TZZ_1A_C1_W01
Zna i rozumie zagadnienia z zakresu szeroko rozumianej "wiedzy inżynierskiej".
TZZ_1A_W15C-1T-L-7, T-L-2, T-L-3, T-L-4, T-L-6, T-L-8, T-L-1, T-L-5, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-W-7, T-W-8M-1, M-2S-3, S-1, S-2
TZZ_1A_C1_W02
Zna budowę i rozumie w stopniu zaawansowanym zasady działania wybranych grup maszyn przemysłu spożywczego.
TZZ_1A_W16, TZZ_1A_W15C-2T-L-2, T-L-4, T-L-1, T-W-2, T-W-5, T-W-7, T-W-8M-1, M-2S-3, S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TZZ_1A_C1_U01
Potrafi konstruować wybrane elementy maszyn.
TZZ_1A_U07C-3T-L-7, T-L-2, T-L-3, T-L-4, T-L-6, T-L-8, T-L-1, T-L-5, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-W-7, T-W-8M-1, M-2S-3, S-1, S-2
TZZ_1A_C1_U02
Potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
TZZ_1A_U07C-4T-L-7, T-L-2, T-L-3, T-L-4, T-L-6, T-L-8, T-L-1, T-L-5, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-W-7, T-W-8M-1, M-2S-3, S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
TZZ_1A_C1_K01
Jest gotów do zastosowania wiedzy i praktycznych umiejętności inżynierskich.
TZZ_1A_K01C-1, C-2, C-3, C-4T-L-7, T-L-2, T-L-3, T-L-4, T-L-6, T-L-8, T-L-1, T-L-5, T-W-3, T-W-1, T-W-2, T-W-4, T-W-5, T-W-7, T-W-8M-1, M-2S-3, S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
TZZ_1A_C1_W01
Zna i rozumie zagadnienia z zakresu szeroko rozumianej "wiedzy inżynierskiej".
2,0Student nie posiada podstawowej "wiedzy inżynierskiej".
3,0Student posiada podstawową "wiedzę inżynierską", ale z licznymi brakami.
3,5Student posiada podstawową "wiedzę inżynierską", ale ze znacznymi niedociągnięciami.
4,0Student posiada dobrą podstawową "wiedzę inżynierską".
4,5Student posiada bardzo dobrą podstawową "wiedzę inżynierską".
5,0Student posiada znakomitą podstawową "wiedzę inżynierską".
TZZ_1A_C1_W02
Zna budowę i rozumie w stopniu zaawansowanym zasady działania wybranych grup maszyn przemysłu spożywczego.
2,0Student nie zna budowy ani zasad działania wybranych grup maszyn przemysłu spożywczego.
3,0Student zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale z licznymi brakami.
3,5Student zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
4,0Student dobrze zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
4,5Student bardzo dobrze zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
5,0Student znakomicie zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
TZZ_1A_C1_U01
Potrafi konstruować wybrane elementy maszyn.
2,0Student nie potrafi konstruować podstawowych elementów maszyn.
3,0Student potrafi konstruować podstawowe elementy maszyn, ale z licznymi błędami.
3,5Student potrafi konstruować podstawowe elementy maszyn, ale ze znacznymi niedociągnięciami.
4,0Student dobrze potrafi konstruować podstawowe elementy maszyn.
4,5Student bardzo dobrze potrafi konstruować podstawowe elementy maszyn.
5,0Student znakomicie potrafi konstruować podstawowe elementy maszyn.
TZZ_1A_C1_U02
Potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
2,0Student nie potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
3,0Student potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych), ale z licznymi błędami.
3,5Student potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych), ale ze znacznymi niedociągnięciami.
4,0Student dobrze potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
4,5Student bardzo dobrze potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
5,0Studentznakomicie potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
TZZ_1A_C1_K01
Jest gotów do zastosowania wiedzy i praktycznych umiejętności inżynierskich.
2,0Student nie ma świadomości swojej wiedzy i praktycznych umiejętności inżynierskich.
3,0Student ma częściową świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
3,5Student ma zadowalającą świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
4,0Student ma świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
4,5Student ma znaczną świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
5,0Student ma pełną świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.

Literatura podstawowa

  1. Lewicki P., Inżynieria procesowa i aparatura przemysłu spożywczego. WNT W-wa. 2017, WNT, Warszawa, 2017
  2. Dietrich J. i in., Podstawy konstrukcji Maszyn. Cz. I, II, III., WNT., Waeszawa, 2009
  3. Kawka T., Balejko J. i in., Maszynoznawstwo ogólne., Wydawnictwo Akademii Rolniczej w Szczecinie. Skrypt dla studentów AR w Szczecinie., Szczecin, 1982
  4. Błasiński H., Maszyny i aparatura technologiczna przemysłu spożywczego, Politechnika ŁódzkA, Łódź, 2001

Literatura dodatkowa

  1. Kawka T., Balejko J., Kolbiarz A. i in., Przewodnik metodyczny do ćwiczeń z maszynoznawstwa ogólnego., Wydawnictwo Akademii Rolniczej w Szczecinie. Skrypt dla studentów AR w Szczecinie, Szczecin, 1977
  2. Kawka T., Balejko J., i in., Zeszyt do ćwiczeń z rysunku technicznego, Wydawnictwo Akademii Rolniczej w Szczecinie., Szczecin, 1982

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne2
T-L-2Przekroje części maszyn4
T-L-3Rzuty aksonometryczne4
T-L-4Wymiarowanie elementów maszyn4
T-L-5Praca w środowisku AutoCad8
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.2
T-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.2
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.2
T-L-9Zaliczenie ćwiczeń2
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego2
T-W-2Przekroje i rzuty aksonometryczne części maszyn2
T-W-3Wymiarowanie elementów maszyn2
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn2
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego2
T-W-6Ogólna budowa maszyn2
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.2
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).10
T-W-9Maszyny i urządzenia do rozdzielania materiałów niejednorodnych.2
T-W-10Maszyny i urządzenia do wytłaczania cieczy z surowców, nadawania kształtu i ekstruzji, rozpylania cieczy, mieszania, aglomeracji.2
T-W-11Maszyny i urządzenia do transportu surowców i produktów2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach30
A-L-2przygotowanie się do zajęć11
A-L-3konsulacje z prowadzącym1
A-L-4studiowanie literatury5
A-L-5Przygotowanie sprawozdania z ćwiczeń3
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2studiowanie literatury4
A-W-3przygotowanie do egzaminu14
A-W-4Egzamin2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięTZZ_1A_C1_W01Zna i rozumie zagadnienia z zakresu szeroko rozumianej "wiedzy inżynierskiej".
Odniesienie do efektów kształcenia dla kierunku studiówTZZ_1A_W15Zna i rozumie zasady i prawa inżynierii procesowej, zna w stopniu zaawansowanym terminologię w zakresie inżynierii przemysłu spożywczego i maszynoznawstwa dotyczącą materiałów, rozwiązań konstrukcyjnych maszyn i urządzeń przemysłu spożywczego, projektowania, eksploatacji linii technologicznych.
Cel przedmiotuC-1Przekazanie podstaw szeroko rozumianej "wiedzy inżynierskiej".
Treści programoweT-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.
T-L-2Przekroje części maszyn
T-L-3Rzuty aksonometryczne
T-L-4Wymiarowanie elementów maszyn
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne
T-L-5Praca w środowisku AutoCad
T-W-3Wymiarowanie elementów maszyn
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego
T-W-2Przekroje i rzuty aksonometryczne części maszyn
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).
Metody nauczaniaM-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-3Ocena podsumowująca: Egzamin.
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada podstawowej "wiedzy inżynierskiej".
3,0Student posiada podstawową "wiedzę inżynierską", ale z licznymi brakami.
3,5Student posiada podstawową "wiedzę inżynierską", ale ze znacznymi niedociągnięciami.
4,0Student posiada dobrą podstawową "wiedzę inżynierską".
4,5Student posiada bardzo dobrą podstawową "wiedzę inżynierską".
5,0Student posiada znakomitą podstawową "wiedzę inżynierską".
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięTZZ_1A_C1_W02Zna budowę i rozumie w stopniu zaawansowanym zasady działania wybranych grup maszyn przemysłu spożywczego.
Odniesienie do efektów kształcenia dla kierunku studiówTZZ_1A_W16Zna i rozumie w zaawansowanym stopniu metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu zadań inżynierskich w technologii i biotechnologii przemysłu spożywczego.
TZZ_1A_W15Zna i rozumie zasady i prawa inżynierii procesowej, zna w stopniu zaawansowanym terminologię w zakresie inżynierii przemysłu spożywczego i maszynoznawstwa dotyczącą materiałów, rozwiązań konstrukcyjnych maszyn i urządzeń przemysłu spożywczego, projektowania, eksploatacji linii technologicznych.
Cel przedmiotuC-2Zapoznanie studentów z budową i zasadami działania wybranych grup maszyn przemysłu spożywczego.
Treści programoweT-L-2Przekroje części maszyn
T-L-4Wymiarowanie elementów maszyn
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne
T-W-2Przekroje i rzuty aksonometryczne części maszyn
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).
Metody nauczaniaM-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-3Ocena podsumowująca: Egzamin.
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna budowy ani zasad działania wybranych grup maszyn przemysłu spożywczego.
3,0Student zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale z licznymi brakami.
3,5Student zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
4,0Student dobrze zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
4,5Student bardzo dobrze zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
5,0Student znakomicie zna budowę i zasady działania wybranych grup maszyn przemysłu spożywczego, ale ze znacznymi brakami.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięTZZ_1A_C1_U01Potrafi konstruować wybrane elementy maszyn.
Odniesienie do efektów kształcenia dla kierunku studiówTZZ_1A_U07Potrafi rozwiązywać problemy inżynierskie związane z projektowaniem, wyposażaniem i eksploatacją linii technologicznych przemysłu spożywczego. W tym celu potrafi wykorzystać poznane metody komputerowe.
Cel przedmiotuC-3Ukształtowanie podstawowych umiejętności konstruowania elementów maszyn.
Treści programoweT-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.
T-L-2Przekroje części maszyn
T-L-3Rzuty aksonometryczne
T-L-4Wymiarowanie elementów maszyn
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne
T-L-5Praca w środowisku AutoCad
T-W-3Wymiarowanie elementów maszyn
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego
T-W-2Przekroje i rzuty aksonometryczne części maszyn
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).
Metody nauczaniaM-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-3Ocena podsumowująca: Egzamin.
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi konstruować podstawowych elementów maszyn.
3,0Student potrafi konstruować podstawowe elementy maszyn, ale z licznymi błędami.
3,5Student potrafi konstruować podstawowe elementy maszyn, ale ze znacznymi niedociągnięciami.
4,0Student dobrze potrafi konstruować podstawowe elementy maszyn.
4,5Student bardzo dobrze potrafi konstruować podstawowe elementy maszyn.
5,0Student znakomicie potrafi konstruować podstawowe elementy maszyn.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięTZZ_1A_C1_U02Potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
Odniesienie do efektów kształcenia dla kierunku studiówTZZ_1A_U07Potrafi rozwiązywać problemy inżynierskie związane z projektowaniem, wyposażaniem i eksploatacją linii technologicznych przemysłu spożywczego. W tym celu potrafi wykorzystać poznane metody komputerowe.
Cel przedmiotuC-4Praktyczne opanowanie umiejętności równoczesnego wykorzystania wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
Treści programoweT-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.
T-L-2Przekroje części maszyn
T-L-3Rzuty aksonometryczne
T-L-4Wymiarowanie elementów maszyn
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne
T-L-5Praca w środowisku AutoCad
T-W-3Wymiarowanie elementów maszyn
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego
T-W-2Przekroje i rzuty aksonometryczne części maszyn
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).
Metody nauczaniaM-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-3Ocena podsumowująca: Egzamin.
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
3,0Student potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych), ale z licznymi błędami.
3,5Student potrafi w praktyce równocześnie wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych), ale ze znacznymi niedociągnięciami.
4,0Student dobrze potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
4,5Student bardzo dobrze potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
5,0Studentznakomicie potrafi w praktyce wykorzystać wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięTZZ_1A_C1_K01Jest gotów do zastosowania wiedzy i praktycznych umiejętności inżynierskich.
Odniesienie do efektów kształcenia dla kierunku studiówTZZ_1A_K01Jest gotów do zastosowania zdobytej wiedzy w rozwiązywaniu problemów poznawczych i praktycznych.
Cel przedmiotuC-1Przekazanie podstaw szeroko rozumianej "wiedzy inżynierskiej".
C-2Zapoznanie studentów z budową i zasadami działania wybranych grup maszyn przemysłu spożywczego.
C-3Ukształtowanie podstawowych umiejętności konstruowania elementów maszyn.
C-4Praktyczne opanowanie umiejętności równoczesnego wykorzystania wiadomości uzyskanych z różnych dziedzin (rysunku technicznego, mechaniki, materiałoznawstwa, wytrzymałości materiałów, technik wytwarzania i innych).
Treści programoweT-L-7Analiza budowy transporterów cięgnowych, dobór rodzaju i parametrów transportera do przemieszczania wybranych surowców i produktów – obliczenia komputerowe.
T-L-2Przekroje części maszyn
T-L-3Rzuty aksonometryczne
T-L-4Wymiarowanie elementów maszyn
T-L-6Przenoszenie napędu. Dobór przekładni i silnika do napędu wybranych urządzeń.
T-L-8Analiza układu kinematycznego dla wybranych urządzeń przemysłu spożywczego.
T-L-1Szkicowanie odręczne elementów maszyn. Rzutowanie prostokątne
T-L-5Praca w środowisku AutoCad
T-W-3Wymiarowanie elementów maszyn
T-W-1Rysunek techniczny: zasady rzutowania prostokątnego
T-W-2Przekroje i rzuty aksonometryczne części maszyn
T-W-4AutoCad jako narzędzie do tworzenia rysunków części maszyn
T-W-5Materiały stosowane do budowy maszyn i urzadzeń przemysłu spożywczego
T-W-7Ogólny podział i klasyfikacja maszyn i urządzeń.
T-W-8Maszyny i urządzenia do realizacji procesów mechanicznych (rozdrabnianie ciał stałych, czyszczenie, sortowanie przesiewanie, mycie i czyszczenie surowców, oddzielanie składników zbędnych i niejadalnych od surowców).
Metody nauczaniaM-1Wykład informacyjny z prezentacją multimedialną.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-3Ocena podsumowująca: Egzamin.
S-1Ocena formująca: Ocena bieżąca wykonywania ćwiczeń
S-2Ocena podsumowująca: Zaliczenie na podstawie średniej ocen z poszczególnych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma świadomości swojej wiedzy i praktycznych umiejętności inżynierskich.
3,0Student ma częściową świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
3,5Student ma zadowalającą świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
4,0Student ma świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
4,5Student ma znaczną świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.
5,0Student ma pełną świadomość swojej wiedzy i praktycznych umiejętności inżynierskich.