Wydział Techniki Morskiej i Transportu - Transport (S1)
specjalność: Inżynieria ruchu w transporcie
Sylabus przedmiotu Podstawy automatyki:
Informacje podstawowe
Kierunek studiów | Transport | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Podstawy automatyki | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Klimatyzacji i Transportu Chłodniczego | ||
Nauczyciel odpowiedzialny | Piotr Nikończuk <Piotr.Nikonczuk@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Matematyka, rachunek macierzowy |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Znajomość dynamiki i stabilności liniowych układów regulacji |
C-2 | Znajomość współczesnych metod sterowania automatycznego |
C-3 | Orientacja w układach steroników PLC oraz układów monitoringu i wizualizacji. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Instruktaż BHP. Wprowadzenie do Matlab’a. | 2 |
T-L-2 | Wyznaczanie charakterystyk podstawowych członów automatyki. | 4 |
T-L-3 | Dobór nastaw regulatora PID. | 2 |
T-L-4 | Badanie stabilności układów sterowania. | 2 |
T-L-5 | Programowanie sterowników PLC | 2 |
T-L-6 | Systemy monitoringu i wizualizacji. | 2 |
T-L-7 | Zaliczenie zajęć laboratoryjnych | 1 |
15 | ||
wykłady | ||
T-W-1 | Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe. | 3 |
T-W-2 | Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości. | 5 |
T-W-3 | Sterowniki programowalne. Systemy monitoringu i wizualizacji. | 4 |
T-W-4 | Wstęp do sterowania odpornego i rozmytego. | 2 |
T-W-5 | zaliczenie przedmiotu | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 15 |
A-L-2 | Przygotowanie się do zajęć, opracowywanie wyników | 7 |
A-L-3 | przygotowanie się do zaliczenia | 3 |
25 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 15 |
A-W-2 | studiowanie literatury | 4 |
A-W-3 | Przygotowanie do zaliczenia | 6 |
25 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Metody podające |
M-2 | Metody problemowe |
M-3 | metody programowane |
M-4 | metody praktyczne |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: zaliczenie pisemne |
S-2 | Ocena podsumowująca: sprawozdania z laboratoriów |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
TR_1A_C17_W01 ma wiedzę o układach regulacji oraz metodach sterowania i regulacji | TR_1A_W11 | — | — | C-1, C-3 | T-L-3, T-L-4, T-L-6, T-L-2, T-L-5, T-W-2, T-W-3, T-W-1 | M-1, M-3, M-4, M-2 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
TR_1A_C17_U01 potrafi przeprowadzić symulację układu regulacji i monitoringu z wybranym obiektem regulacji | TR_1A_U08, TR_1A_U09, TR_1A_U10, TR_1A_U15 | — | — | C-1, C-3, C-2 | T-L-3, T-L-4, T-L-6, T-L-2, T-L-5, T-W-2, T-W-3, T-W-4, T-W-1 | M-1, M-3, M-4, M-2 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
TR_1A_C17_K01 Rozumie potrzebę identyfikacji obiektów sterowania, orientuje się we współczesnych układach sterowania i monitoringu | TR_1A_K02 | — | — | C-1, C-3, C-2 | T-L-3, T-L-4, T-L-6, T-L-2, T-L-5, T-W-2, T-W-3, T-W-4, T-W-1 | M-1, M-3, M-4, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
TR_1A_C17_W01 ma wiedzę o układach regulacji oraz metodach sterowania i regulacji | 2,0 | nie posiada wiedzy na temat liniowych układów automatyki. |
3,0 | Ma podstawową wiedzę o liniowych obiektach automatyki. Nie posiada wiedzy na temat liniowych układów regulacji ze sprzężeniem zwrotnym. | |
3,5 | posiada wiedzę na poziomie pomiędzy 3,0 a 4,0. | |
4,0 | Ma podstawową wiedzę o liniowych obiektach automatyki. Posiada niekompletną wiedzę na temat liniowych układów regulacji ze sprzężeniem zwrotnym i cyfrowych układów sterowania i monitoringu. | |
4,5 | posiada wiedzę na poziomie pomiędzy 4,0 a 4,5. | |
5,0 | Ma podstawową wiedzę o liniowych obiektach automatyki. Posiada kompletną wiedzę na temat liniowych układów regulacji ze sprzężeniem zwrotnym i cyfrowych układów sterowania i monitoringu. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
TR_1A_C17_U01 potrafi przeprowadzić symulację układu regulacji i monitoringu z wybranym obiektem regulacji | 2,0 | nie potrafi utworzyć modelu liniowego układu regulacji. |
3,0 | Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. | |
3,5 | posiada umiejętności na poziomie pomiędzy 3,0 a 4,0 | |
4,0 | Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi wstępnie sformułować zadanie sterowania i monitoringu z wykorzystanie współczesnych narzędzi i metod. | |
4,5 | posiada umiejętności na poziomie pomiędzy 4,0 a 5,0 | |
5,0 | Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi w sposób zaawansowany sformułować zadanie sterowania i monitoringu z wykorzystanie współczesnych narzędzi i metod. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
TR_1A_C17_K01 Rozumie potrzebę identyfikacji obiektów sterowania, orientuje się we współczesnych układach sterowania i monitoringu | 2,0 | Nie jest w stanie określić dynamiki obiektu lub procesu. |
3,0 | Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. | |
3,5 | Kompetencje na poziomie pomiędzy 3,0 a 4,0. | |
4,0 | Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Przeciętnie orientuje się we współczesnych metodach sterowania. | |
4,5 | Kompetencje na poziomie pomiędzy 4,0 a 5,0. | |
5,0 | Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Dobrze orientuje się we współczesnych metodach sterowania. |
Literatura podstawowa
- Dębowski Andrzej, Automatyka. Podstawy Teorii, Wydawnictwo Naukowe PWN, Warszawa, 2017
- Dębowski A., Automatyka. Technika regulacji, Wydawnictwo Naukowe PWN, Warszawa, 2017
- Salat R., Korpysz K., Obstawski P., Wstęp do programowania sterowników PLC, Wydawnictwo Komunikacji i Łączności WKŁ, Warszawa, 2010
- Emirsajłow Z., Teoria układów sterowania. Część I. Układy liniowe z czasem ciągłym, Seria Tempus. Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2000
Literatura dodatkowa
- Dębowski A., Automatyka. Napęd elektryczny, Wydawnictwo Naukowe PWN, Warszawa, 2017
- Winkler W., Wiszniewski A., Automatyka zabezpieczeniowa w systemach elektroenergetycznych, Wydawnictwo Naukowe PWN, Warszawa, 2017