Wydział Technologii i Inżynierii Chemicznej - Chemical Engineering (S1)
Sylabus przedmiotu Computational Fluid Dynamics:
Informacje podstawowe
Kierunek studiów | Chemical Engineering | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Computational Fluid Dynamics | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Inżynierii Chemicznej i Procesowej | ||
Nauczyciel odpowiedzialny | Anna Story <Anna.Story@zut.edu.pl> | ||
Inni nauczyciele | Anna Story <Anna.Story@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | 7 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Fluid dynamics |
W-2 | Chemical engineering fundamentals |
W-3 | Applied mathematics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | This course is aimed at increasing and developing students' knowledge about fundamental principles of computational fluid dynamics, as well as improving their abilities to solving complex engineering problems with using a novel numerical approach and commercial software. Methods of creating the geometry of the body and generation the numerical mesh will be presented. Different models and methods of the simulations will be discussed and applied to solving the selected flow issues. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Introduction to Computational Fluid Dynamics in ANSYS Workbench. Graphical User Interface | 1 |
T-L-2 | Creating the geometry in ANSYS DesignModeler | 8 |
T-L-3 | Generation of mesh in ANSYS Mesher | 6 |
T-L-4 | Introduction to CFD simulations in ANSYS Fluent. Definition of materials of the object and boundary conditions for fluid flow | 3 |
T-L-5 | Postprocessing in ANSYS Fluent | 3 |
T-L-6 | Analysis of a laminar flow in ANSYS Fluent | 3 |
T-L-7 | Applying turbulence model in ANSYS Fluent | 3 |
T-L-8 | Analysis of a heat transfer in ANSYS Fluent | 3 |
T-L-9 | Simulation of multiphase flow in ANSYS Fluent | 3 |
T-L-10 | Modeling of rotating elements in fluent (e.g. rotating wall, multiple reference frame, sliding mesh) | 3 |
T-L-11 | Modeling of a selected issue including creating the geometry, generating the mesh, performing the simulations and postprocessing | 9 |
45 | ||
wykłady | ||
T-W-1 | Introduction to Computational Fluid Dynamics. CFD applications in chemical engineering. Advantages and disadvantages of the CFD approach | 2 |
T-W-2 | Fundamental theoretical principles of conservation: Reynolds transport theorem, Conservation of mass, Conservation of linear momentum: Navier-Stokes equation, Conservation of Energy, General scalar transport equation | 4 |
T-W-3 | Mathematical models of transport processes in fluids: turbulent flows, multiphase flows, non-Newtonian flows. Fundamentals and modeling | 6 |
T-W-4 | Basic structure of numerical analysis using CFD: Pre-processing, Processing, Post-processing | 2 |
T-W-5 | Different types of meshes - structured and unstructured grid formulation. Methods of mesh generation | 4 |
T-W-6 | Principles of numerical solving methods: Finite Element Method, Finite difference method, Finite volume method. Types of boundary conditions | 6 |
T-W-7 | The convergence of a numerical method: accuracy and stability. Role of the validation | 2 |
T-W-8 | Step-by-step analysis of numerical modeling of selected fluid flow cases | 4 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Participation in laboratory classes | 45 |
A-L-2 | Preparation of reports | 10 |
A-L-3 | Literature studies | 15 |
A-L-4 | One-on-One Teaching Consultations | 5 |
75 | ||
wykłady | ||
A-W-1 | Lecture participation | 30 |
A-W-2 | Individual literature studies | 10 |
A-W-3 | Repetition of the lecture content to the written test | 8 |
A-W-4 | One-on-On Teaching Consultation | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Activating methods – lecture and didactic discussion, multimedia presentation |
M-2 | Practical methods – Numerical analysis by solving chemical engineering problems using ANSYS software |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Written final exam based on the lecture contents |
S-2 | Ocena formująca: Mid-term exam 1 – ANSYS DesignModeler and ANSYS Mesher |
S-3 | Ocena formująca: Written final report – ANSYS Fluent |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C17a_W01 Student possesses a general knowledge about the computational methods of solving partial differential equations of transport processes in fluids, understands mathematical characteristic of those equations. Student learns different methods of computational solution of flow issues. | ChEn_1A_W07, ChEn_1A_W08, ChEn_1A_W12, ChEn_1A_W15 | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C17a_U01 Student possesses an ability to identify geometry of the body and generation of the mesh. Student is able to using commercial CFD packages to analyze and solve flow issues, including selection of models and methods of the simulations. | ChEn_1A_U03, ChEn_1A_U05, ChEn_1A_U08, ChEn_1A_U09, ChEn_1A_U10, ChEn_1A_U16, ChEn_1A_U07, ChEn_1A_U01 | — | — | C-1 | T-L-9, T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-10, T-L-11 | M-2 | S-2, S-3 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ChEn_1A_C17a_K01 Student understands the importance of numerical simulation in industrial applications. Student has ability independently or in group to use CFD as a tool to analyze and optimize real flow problems. | ChEn_1A_K04, ChEn_1A_K05, ChEn_1A_K01, ChEn_1A_K03 | — | — | C-1 | T-W-1, T-W-4, T-W-8, T-L-9, T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-10, T-L-11 | M-1, M-2 | S-2, S-1, S-3 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C17a_W01 Student possesses a general knowledge about the computational methods of solving partial differential equations of transport processes in fluids, understands mathematical characteristic of those equations. Student learns different methods of computational solution of flow issues. | 2,0 | Unacceptable understanding of course material |
3,0 | Serious deficiencies in understanding the core subject material | |
3,5 | Some deficiencies in understanding the subject material | |
4,0 | Some deficiencies in understanding the core subject material | |
4,5 | Some mild deficiencies in Mastery of subject material | |
5,0 | Complete Mastery of subject material |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C17a_U01 Student possesses an ability to identify geometry of the body and generation of the mesh. Student is able to using commercial CFD packages to analyze and solve flow issues, including selection of models and methods of the simulations. | 2,0 | Unacceptable understanding of course material |
3,0 | Serious deficiencies in understanding the core subject material | |
3,5 | Some deficiencies in understanding the subject material | |
4,0 | Some deficiencies in understanding the core subject material | |
4,5 | Some mild deficiencies in Mastery of subject material | |
5,0 | Complete Mastery of subject material |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ChEn_1A_C17a_K01 Student understands the importance of numerical simulation in industrial applications. Student has ability independently or in group to use CFD as a tool to analyze and optimize real flow problems. | 2,0 | Unacceptable understanding of course material |
3,0 | Serious deficiencies in understanding the core subject material | |
3,5 | Some deficiencies in understanding the subject material | |
4,0 | Some deficiencies in understanding the core subject material | |
4,5 | Some mild deficiencies in Mastery of subject material | |
5,0 | Complete Mastery of subject material |
Literatura podstawowa
- Hirsch, C, Numerical Computation of Internal and External Flows, Butterworth Heinemann, 2007
- Pletcher, R. H., Tannehill, J. C., Anderson, D., Computational Fluid Mechanics and Heat Transfer, CRC Press, 2011
- Moin, P., Fundamentals of Engineering Numerical Analysis, Cambridge University Press, 2010
Literatura dodatkowa
- Ferziger, J. H., Numerical Methods for Engineering Application, Wiley, 1998
- Ferziger, J. H., Peric, M., Computational Methods for Fluid Dynamics, Springer, 2002