Wydział Elektryczny - Automatyka i robotyka (S2)
Sylabus przedmiotu Modeling and control of hybrid systems:
Informacje podstawowe
Kierunek studiów | Automatyka i robotyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Modeling and control of hybrid systems | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Automatyki i Robotyki | ||
Nauczyciel odpowiedzialny | Przemysław Orłowski <Przemyslaw.Orlowski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | 5 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Knowledge of issues related to modeling and control at the level of engineering studies in automation and robotics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | To familiarize students with the theoretical foundations of discrete and hybrid systems. |
C-2 | Understanding the analytical relationships describing discrete and hybrid systems. |
C-3 | Developing skills in creating and applying selected discrete and hybrid models. |
C-4 | Developing skills in using the most popular programming tools for simulation and research of hybrid and discrete systems. |
C-5 | Learning how to use hybrid dynamic models in nonlinear predictive control. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Developing a model and writing a program that implements a discrete process model using a cellular automaton. | 9 |
T-P-2 | Development of a mathematical model of a hybrid system based on the laws of physics for a bouncing ball. Implementation of the model in Simulink and Stateflow in continuous and discrete time. | 3 |
T-P-3 | Development of a mathematical model of a hybrid system based on the laws of physics for a system of connected tanks and a DC/DC converter. Implementation of the model in Simulink and Stateflow in continuous and discrete time. | 6 |
T-P-4 | Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time. | 6 |
T-P-5 | Implementation of the mathematical model of a hybrid bouncing ball system in Hysdel language. | 3 |
T-P-6 | Implementation of the mathematical model of a hybrid combined tank or DC/DC converter system in Hysdel language. | 6 |
T-P-7 | Implementation of the mathematical model of a hybrid inverted pendulum system in the Hysdel language. | 6 |
T-P-8 | Synthesis of the control system for a discrete hybrid system. Regularization. Study of the control system properties for the continuous-time and discrete-time model. | 6 |
45 | ||
wykłady | ||
T-W-1 | Introduction to Discrete Event and hybrid systems. The concept of a Discrete Event process. Examples of Discrete Event processes. The concept of a hybrid system. Examples of hybrid systems. | 2 |
T-W-2 | Finite automata | 2 |
T-W-3 | Cellular automata | 2 |
T-W-4 | Formal definition of a hybrid system. Discrete-time hybrid models - MLD, PWA. | 2 |
T-W-5 | Creating a hybrid mathematical model based on the laws of physics for example systems (falling ball, thermostat, multi-tank system, inverted pendulum, automatic transmission). | 3 |
T-W-6 | Modeling hybrid systems in HYSDEL. Discussion of the model structure - interface part, implementation part, code syntax, commands. Compiler. Examples. | 2 |
T-W-7 | Predictive control of hybrid systems using the Multi Parametric Toolbox. Examples of applications of hybrid predictive controllers. | 2 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | participation in classes | 45 |
A-P-2 | selfstudy | 17 |
A-P-3 | reports preparation | 6 |
A-P-4 | consultations | 2 |
70 | ||
wykłady | ||
A-W-1 | participation in classes | 15 |
A-W-2 | selfstudy | 7 |
A-W-3 | preparation to the final assesment | 8 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Instructional methods: informative lecture, description, explanation. |
M-2 | Activating methods: didactic discussion. |
M-3 | Practical methods: project method. |
M-4 | Computer programmed methods. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members. |
S-2 | Ocena podsumowująca: Assessment at the end of the course summarizing the achieved learning outcomes - oral assesment. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_2A_C09.2_W01 Student can explain the idea of hybrid and discrete systems and provide examples. Student can describe the most popular models of hybrid and discrete systems. Student can discuss an example programming tool for simulating hybrid systems. | AR_2A_W03, AR_2A_W04 | — | — | C-1, C-2 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_2A_C09.2_U01 Student is able to present practical examples of hybrid and discrete systems. Is able to design a hybrid control system. | AR_2A_U03, AR_2A_U04 | — | — | C-3, C-4, C-5 | T-P-1, T-P-2, T-P-3, T-P-4, T-P-5, T-P-8 | M-2, M-3, M-4 | S-1 |
AR_2A_C09.2_U02 Student is able to create a model of a hybrid system based on the laws of physics and is able to write it down formally. | AR_2A_U03, AR_2A_U04 | — | — | C-3 | T-P-2, T-P-3, T-P-4 | M-3 | S-1, S-2 |
AR_2A_C09.2_U03 The student is able to apply selected models of hybrid and discrete systems for simulation. Is able to use the most popular programming tools for simulation of hybrid and discrete systems. | AR_2A_U03, AR_2A_U04 | — | — | C-3, C-4, C-5 | T-P-4, T-P-5, T-P-6, T-P-7 | M-3, M-4 | S-1 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
AR_2A_C09.2_W01 Student can explain the idea of hybrid and discrete systems and provide examples. Student can describe the most popular models of hybrid and discrete systems. Student can discuss an example programming tool for simulating hybrid systems. | 2,0 | Any form of assessment is failed (i.e. grade 2). |
3,0 | The weighted average of the assessment forms is within the range (2,3.25). | |
3,5 | The weighted average of the assessment forms is within the range <3.25,3.75). | |
4,0 | The weighted average of the assessment forms is within the range <3.75,4.25). | |
4,5 | The weighted average of the assessment forms is within the range <4.25,4.75). | |
5,0 | The weighted average of the assessment forms is at least 4.75. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
AR_2A_C09.2_U01 Student is able to present practical examples of hybrid and discrete systems. Is able to design a hybrid control system. | 2,0 | Any assessment form is failed (i.e. a grade of 2). |
3,0 | The weighted average of the assessment forms is in the range (2,3.25). | |
3,5 | The weighted average of the assessment forms is in the range <3.25,3.75). | |
4,0 | The weighted average of the assessment forms is in the range <3.75,4.25). | |
4,5 | The weighted average of the assessment forms is in the range <4.25,4.75). | |
5,0 | The weighted average of the assessment forms is at least 4.75. | |
AR_2A_C09.2_U02 Student is able to create a model of a hybrid system based on the laws of physics and is able to write it down formally. | 2,0 | Any assessment form is failed (i.e. a grade of 2). |
3,0 | The weighted average of the assessment forms is in the range (2,3.25). | |
3,5 | The weighted average of the assessment forms is in the range <3.25,3.75). | |
4,0 | The weighted average of the assessment forms is in the range <3.75,4.25). | |
4,5 | The weighted average of the assessment forms is in the range <4.25,4.75). | |
5,0 | The weighted average of the assessment forms is at least 4.75. | |
AR_2A_C09.2_U03 The student is able to apply selected models of hybrid and discrete systems for simulation. Is able to use the most popular programming tools for simulation of hybrid and discrete systems. | 2,0 | Any assessment form is failed (i.e. a grade of 2). |
3,0 | The weighted average of the assessment forms is in the range (2,3.25). | |
3,5 | The weighted average of the assessment forms is in the range <3.25,3.75). | |
4,0 | The weighted average of the assessment forms is in the range <3.75,4.25). | |
4,5 | The weighted average of the assessment forms is in the range <4.25,4.75). | |
5,0 | The weighted average of the assessment forms is at least 4.75. |
Literatura podstawowa
- Khalil H. K., Nonlinear Systems, Prentice Hall, 1996, 2nd edition
- Hespanha J., Morse A. S., Switching Between Stabilizing Controllers, Automatica, 2002, 38(11)
- Goebel R., Hespanha J., Teel A., Cai C., Sanfelice R., Hybrid Systems: Generalized Solutions and Robust Stability, In Proc. of the 6th IFAC Symp. on Nonlinear Contr. Systems, 2004
- Antsaklis P. J., Special issue on hybrid systems: Theory and applications, Proc. of the IEEE, 2000, vol. 88, no. 7
- Morari M., Thiele L. (eds.), Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland, Springer, 2005, March 9–11
- M. Kubale, Optymalizacja dyskretna, modele i metody kolorowania grafów, WNT, Warszawa, 2002
- Grossman R. L., Nerode A., Ravn A. P., Rischel H. ( eds.), Hybrid systems, Springer, 1993
- Lygeros J., Tomlin C., Sastry S., Hybrid Systems: Modeling, Analysis and Control, 2008, http://inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf
Literatura dodatkowa
- Carloni L. P., Passerone R., Pinto A., Sangiovanni-Vincentelli A. L., Languages and Tools for Hybrid Systems Design, NOW, the essence of knowledge, Foundations and Trends in Electronic Design Automation, 2006