Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Automatyka i robotyka (S2)

Sylabus przedmiotu Modeling and control of hybrid systems:

Informacje podstawowe

Kierunek studiów Automatyka i robotyka
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Modeling and control of hybrid systems
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Automatyki i Robotyki
Nauczyciel odpowiedzialny Przemysław Orłowski <Przemyslaw.Orlowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny 5 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 15 1,20,56zaliczenie
projektyP2 45 2,80,44zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of issues related to modeling and control at the level of engineering studies in automation and robotics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1To familiarize students with the theoretical foundations of discrete and hybrid systems.
C-2Understanding the analytical relationships describing discrete and hybrid systems.
C-3Developing skills in creating and applying selected discrete and hybrid models.
C-4Developing skills in using the most popular programming tools for simulation and research of hybrid and discrete systems.
C-5Learning how to use hybrid dynamic models in nonlinear predictive control.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Developing a model and writing a program that implements a discrete process model using a cellular automaton.9
T-P-2Development of a mathematical model of a hybrid system based on the laws of physics for a bouncing ball. Implementation of the model in Simulink and Stateflow in continuous and discrete time.3
T-P-3Development of a mathematical model of a hybrid system based on the laws of physics for a system of connected tanks and a DC/DC converter. Implementation of the model in Simulink and Stateflow in continuous and discrete time.6
T-P-4Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time.6
T-P-5Implementation of the mathematical model of a hybrid bouncing ball system in Hysdel language.3
T-P-6Implementation of the mathematical model of a hybrid combined tank or DC/DC converter system in Hysdel language.6
T-P-7Implementation of the mathematical model of a hybrid inverted pendulum system in the Hysdel language.6
T-P-8Synthesis of the control system for a discrete hybrid system. Regularization. Study of the control system properties for the continuous-time and discrete-time model.6
45
wykłady
T-W-1Introduction to Discrete Event and hybrid systems. The concept of a Discrete Event process. Examples of Discrete Event processes. The concept of a hybrid system. Examples of hybrid systems.2
T-W-2Finite automata2
T-W-3Cellular automata2
T-W-4Formal definition of a hybrid system. Discrete-time hybrid models - MLD, PWA.2
T-W-5Creating a hybrid mathematical model based on the laws of physics for example systems (falling ball, thermostat, multi-tank system, inverted pendulum, automatic transmission).3
T-W-6Modeling hybrid systems in HYSDEL. Discussion of the model structure - interface part, implementation part, code syntax, commands. Compiler. Examples.2
T-W-7Predictive control of hybrid systems using the Multi Parametric Toolbox. Examples of applications of hybrid predictive controllers.2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1participation in classes45
A-P-2selfstudy17
A-P-3reports preparation6
A-P-4consultations2
70
wykłady
A-W-1participation in classes15
A-W-2selfstudy7
A-W-3preparation to the final assesment8
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Instructional methods: informative lecture, description, explanation.
M-2Activating methods: didactic discussion.
M-3Practical methods: project method.
M-4Computer programmed methods.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members.
S-2Ocena podsumowująca: Assessment at the end of the course summarizing the achieved learning outcomes - oral assesment.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_2A_C09.2_W01
Student can explain the idea of ​​hybrid and discrete systems and provide examples. Student can describe the most popular models of hybrid and discrete systems. Student can discuss an example programming tool for simulating hybrid systems.
AR_2A_W03, AR_2A_W04C-1, C-2T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_2A_C09.2_U01
Student is able to present practical examples of hybrid and discrete systems. Is able to design a hybrid control system.
AR_2A_U03, AR_2A_U04C-3, C-4, C-5T-P-1, T-P-2, T-P-3, T-P-4, T-P-5, T-P-8M-2, M-3, M-4S-1
AR_2A_C09.2_U02
Student is able to create a model of a hybrid system based on the laws of physics and is able to write it down formally.
AR_2A_U03, AR_2A_U04C-3T-P-2, T-P-3, T-P-4M-3S-1, S-2
AR_2A_C09.2_U03
The student is able to apply selected models of hybrid and discrete systems for simulation. Is able to use the most popular programming tools for simulation of hybrid and discrete systems.
AR_2A_U03, AR_2A_U04C-3, C-4, C-5T-P-4, T-P-5, T-P-6, T-P-7M-3, M-4S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
AR_2A_C09.2_W01
Student can explain the idea of ​​hybrid and discrete systems and provide examples. Student can describe the most popular models of hybrid and discrete systems. Student can discuss an example programming tool for simulating hybrid systems.
2,0Any form of assessment is failed (i.e. grade 2).
3,0The weighted average of the assessment forms is within the range (2,3.25).
3,5The weighted average of the assessment forms is within the range <3.25,3.75).
4,0The weighted average of the assessment forms is within the range <3.75,4.25).
4,5The weighted average of the assessment forms is within the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
AR_2A_C09.2_U01
Student is able to present practical examples of hybrid and discrete systems. Is able to design a hybrid control system.
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.
AR_2A_C09.2_U02
Student is able to create a model of a hybrid system based on the laws of physics and is able to write it down formally.
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.
AR_2A_C09.2_U03
The student is able to apply selected models of hybrid and discrete systems for simulation. Is able to use the most popular programming tools for simulation of hybrid and discrete systems.
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.

Literatura podstawowa

  1. Khalil H. K., Nonlinear Systems, Prentice Hall, 1996, 2nd edition
  2. Hespanha J., Morse A. S., Switching Between Stabilizing Controllers, Automatica, 2002, 38(11)
  3. Goebel R., Hespanha J., Teel A., Cai C., Sanfelice R., Hybrid Systems: Generalized Solutions and Robust Stability, In Proc. of the 6th IFAC Symp. on Nonlinear Contr. Systems, 2004
  4. Antsaklis P. J., Special issue on hybrid systems: Theory and applications, Proc. of the IEEE, 2000, vol. 88, no. 7
  5. Morari M., Thiele L. (eds.), Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland, Springer, 2005, March 9–11
  6. M. Kubale, Optymalizacja dyskretna, modele i metody kolorowania grafów, WNT, Warszawa, 2002
  7. Grossman R. L., Nerode A., Ravn A. P., Rischel H. ( eds.), Hybrid systems, Springer, 1993
  8. Lygeros J., Tomlin C., Sastry S., Hybrid Systems: Modeling, Analysis and Control, 2008, http://inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf

Literatura dodatkowa

  1. Carloni L. P., Passerone R., Pinto A., Sangiovanni-Vincentelli A. L., Languages and Tools for Hybrid Systems Design, NOW, the essence of knowledge, Foundations and Trends in Electronic Design Automation, 2006

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Developing a model and writing a program that implements a discrete process model using a cellular automaton.9
T-P-2Development of a mathematical model of a hybrid system based on the laws of physics for a bouncing ball. Implementation of the model in Simulink and Stateflow in continuous and discrete time.3
T-P-3Development of a mathematical model of a hybrid system based on the laws of physics for a system of connected tanks and a DC/DC converter. Implementation of the model in Simulink and Stateflow in continuous and discrete time.6
T-P-4Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time.6
T-P-5Implementation of the mathematical model of a hybrid bouncing ball system in Hysdel language.3
T-P-6Implementation of the mathematical model of a hybrid combined tank or DC/DC converter system in Hysdel language.6
T-P-7Implementation of the mathematical model of a hybrid inverted pendulum system in the Hysdel language.6
T-P-8Synthesis of the control system for a discrete hybrid system. Regularization. Study of the control system properties for the continuous-time and discrete-time model.6
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Introduction to Discrete Event and hybrid systems. The concept of a Discrete Event process. Examples of Discrete Event processes. The concept of a hybrid system. Examples of hybrid systems.2
T-W-2Finite automata2
T-W-3Cellular automata2
T-W-4Formal definition of a hybrid system. Discrete-time hybrid models - MLD, PWA.2
T-W-5Creating a hybrid mathematical model based on the laws of physics for example systems (falling ball, thermostat, multi-tank system, inverted pendulum, automatic transmission).3
T-W-6Modeling hybrid systems in HYSDEL. Discussion of the model structure - interface part, implementation part, code syntax, commands. Compiler. Examples.2
T-W-7Predictive control of hybrid systems using the Multi Parametric Toolbox. Examples of applications of hybrid predictive controllers.2
15

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1participation in classes45
A-P-2selfstudy17
A-P-3reports preparation6
A-P-4consultations2
70
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1participation in classes15
A-W-2selfstudy7
A-W-3preparation to the final assesment8
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_2A_C09.2_W01Student can explain the idea of ​​hybrid and discrete systems and provide examples. Student can describe the most popular models of hybrid and discrete systems. Student can discuss an example programming tool for simulating hybrid systems.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_W03Ma poszerzoną i pogłębioną wiedzę z teorii sterowania i systemów.
AR_2A_W04Ma poszerzoną i podbudowaną teoretycznie wiedzę o sterowaniu procesami w ujęciu dyskretnym oraz hybrydowym.
Cel przedmiotuC-1To familiarize students with the theoretical foundations of discrete and hybrid systems.
C-2Understanding the analytical relationships describing discrete and hybrid systems.
Treści programoweT-W-1Introduction to Discrete Event and hybrid systems. The concept of a Discrete Event process. Examples of Discrete Event processes. The concept of a hybrid system. Examples of hybrid systems.
T-W-2Finite automata
T-W-3Cellular automata
T-W-4Formal definition of a hybrid system. Discrete-time hybrid models - MLD, PWA.
T-W-5Creating a hybrid mathematical model based on the laws of physics for example systems (falling ball, thermostat, multi-tank system, inverted pendulum, automatic transmission).
T-W-6Modeling hybrid systems in HYSDEL. Discussion of the model structure - interface part, implementation part, code syntax, commands. Compiler. Examples.
T-W-7Predictive control of hybrid systems using the Multi Parametric Toolbox. Examples of applications of hybrid predictive controllers.
Metody nauczaniaM-1Instructional methods: informative lecture, description, explanation.
M-2Activating methods: didactic discussion.
Sposób ocenyS-1Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members.
S-2Ocena podsumowująca: Assessment at the end of the course summarizing the achieved learning outcomes - oral assesment.
Kryteria ocenyOcenaKryterium oceny
2,0Any form of assessment is failed (i.e. grade 2).
3,0The weighted average of the assessment forms is within the range (2,3.25).
3,5The weighted average of the assessment forms is within the range <3.25,3.75).
4,0The weighted average of the assessment forms is within the range <3.75,4.25).
4,5The weighted average of the assessment forms is within the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_2A_C09.2_U01Student is able to present practical examples of hybrid and discrete systems. Is able to design a hybrid control system.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_U03Potrafi dokonać analizy i syntezy algorytmów sterowania złożonymi procesami technologicznymi wykorzystując w tym celu odpowiednie metody i narzędzia informatyczne.
AR_2A_U04Potrafi zaprojektować hybrydowy układ sterowania złożonym procesem technologicznym.
Cel przedmiotuC-3Developing skills in creating and applying selected discrete and hybrid models.
C-4Developing skills in using the most popular programming tools for simulation and research of hybrid and discrete systems.
C-5Learning how to use hybrid dynamic models in nonlinear predictive control.
Treści programoweT-P-1Developing a model and writing a program that implements a discrete process model using a cellular automaton.
T-P-2Development of a mathematical model of a hybrid system based on the laws of physics for a bouncing ball. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-3Development of a mathematical model of a hybrid system based on the laws of physics for a system of connected tanks and a DC/DC converter. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-4Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-5Implementation of the mathematical model of a hybrid bouncing ball system in Hysdel language.
T-P-8Synthesis of the control system for a discrete hybrid system. Regularization. Study of the control system properties for the continuous-time and discrete-time model.
Metody nauczaniaM-2Activating methods: didactic discussion.
M-3Practical methods: project method.
M-4Computer programmed methods.
Sposób ocenyS-1Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members.
Kryteria ocenyOcenaKryterium oceny
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_2A_C09.2_U02Student is able to create a model of a hybrid system based on the laws of physics and is able to write it down formally.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_U03Potrafi dokonać analizy i syntezy algorytmów sterowania złożonymi procesami technologicznymi wykorzystując w tym celu odpowiednie metody i narzędzia informatyczne.
AR_2A_U04Potrafi zaprojektować hybrydowy układ sterowania złożonym procesem technologicznym.
Cel przedmiotuC-3Developing skills in creating and applying selected discrete and hybrid models.
Treści programoweT-P-2Development of a mathematical model of a hybrid system based on the laws of physics for a bouncing ball. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-3Development of a mathematical model of a hybrid system based on the laws of physics for a system of connected tanks and a DC/DC converter. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-4Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
Metody nauczaniaM-3Practical methods: project method.
Sposób ocenyS-1Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members.
S-2Ocena podsumowująca: Assessment at the end of the course summarizing the achieved learning outcomes - oral assesment.
Kryteria ocenyOcenaKryterium oceny
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_2A_C09.2_U03The student is able to apply selected models of hybrid and discrete systems for simulation. Is able to use the most popular programming tools for simulation of hybrid and discrete systems.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_U03Potrafi dokonać analizy i syntezy algorytmów sterowania złożonymi procesami technologicznymi wykorzystując w tym celu odpowiednie metody i narzędzia informatyczne.
AR_2A_U04Potrafi zaprojektować hybrydowy układ sterowania złożonym procesem technologicznym.
Cel przedmiotuC-3Developing skills in creating and applying selected discrete and hybrid models.
C-4Developing skills in using the most popular programming tools for simulation and research of hybrid and discrete systems.
C-5Learning how to use hybrid dynamic models in nonlinear predictive control.
Treści programoweT-P-4Development of a mathematical model of a hybrid system based on the laws of physics for an inverted pendulum. Implementation of the model in Simulink and Stateflow in continuous and discrete time.
T-P-5Implementation of the mathematical model of a hybrid bouncing ball system in Hysdel language.
T-P-6Implementation of the mathematical model of a hybrid combined tank or DC/DC converter system in Hysdel language.
T-P-7Implementation of the mathematical model of a hybrid inverted pendulum system in the Hysdel language.
Metody nauczaniaM-3Practical methods: project method.
M-4Computer programmed methods.
Sposób ocenyS-1Ocena podsumowująca: The assessment is given at the end of the project cycle based on partial assessments of submitted projects and the activity and work of individual team members.
Kryteria ocenyOcenaKryterium oceny
2,0Any assessment form is failed (i.e. a grade of 2).
3,0The weighted average of the assessment forms is in the range (2,3.25).
3,5The weighted average of the assessment forms is in the range <3.25,3.75).
4,0The weighted average of the assessment forms is in the range <3.75,4.25).
4,5The weighted average of the assessment forms is in the range <4.25,4.75).
5,0The weighted average of the assessment forms is at least 4.75.