Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Elektrotechnika (N1)

Sylabus przedmiotu Power Electronics:

Informacje podstawowe

Kierunek studiów Elektrotechnika
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Power Electronics
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Maszyn i Napędów Elektrycznych
Nauczyciel odpowiedzialny Konrad Woronowicz <konrad.woronowicz@zut.edu.pl>
Inni nauczyciele Marcin Wardach <Marcin.Wardach@zut.edu.pl>, Adam Żywica <adam.zywica@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język angielski
Blok obieralny 21 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 18 2,00,30zaliczenie
wykładyW6 18 2,00,44egzamin
ćwiczenia audytoryjneA6 9 1,00,26zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of electrical engineering in the field of analysis of both linear and nonlinear circuits
W-2Knowledge of the operation of basic electronic circuits

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Understanding the operating principles of power semiconductor devices
C-2Understanding the principles of operation of basic power electronic circuits

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Rectifiers – calculation of average, RMS, and effective values of rectified voltage, voltage ripple for a given capacitance1
T-A-2Power transistors: thermal calculations – conduction and switching losses, junction temperature, heatsink2
T-A-3Buck converter – project (semiconductor components)2
T-A-4Buck converter – passive and magnetic components2
T-A-5Magnetic components – high-frequency transformer2
9
laboratoria
T-L-1Introduction to the laboratory1
T-L-2Rectifier testing – resistive load, capacitive load, passive PFC2
T-L-3Testing of MOSFET transistors and SiC diodes (measurement of parameters in on, off, and blocking states; effect of changes in gate circuit resistance and voltage on transistor properties in static states; effect of temperature on device characteristics)2
T-L-4DC-DC converter testing: buck converter2
T-L-5DC-DC converter testing: boost converter2
T-L-6Testing of an isolated DC-DC converter: flyback converter2
T-L-7Testing of an isolated converter: push-pull converter2
T-L-8Inverter testing: simulation model in PLECS and/or PSIM2
T-L-9Inverter testing: PWM modulator (simulated in PLECS and/or PSIM)2
T-L-10Simulation studies of a converter topology assigned by the instructor1
18
wykłady
T-W-1Role and importance of power electronics in modern industry and economy; types of converters1
T-W-2Modern semiconductor power components – structure, operating principle, basic parameters1
T-W-3Thermal properties and parameters of semiconductor power components, power loss calculation, selection of cooling systems2
T-W-4Structure and construction of a power electronic converter, isolated triggering circuits for thyristors and control circuits for power transistors2
T-W-5AC-DC converter: uncontrolled and controlled rectifiers, single-phase and multi-phase with line commutation4
T-W-6DC-DC converter (periodic switch): Buck, Flyback and Boost converters2
T-W-7Basics of the output voltage and current shaping methods in inverters (PWM, harmonic elimination, vector control, reference waveform tracking)4
T-W-8Modern tools for analysis and computer-aided design (CAD) of power electronic converters2
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Participation in tutorials15
A-A-2Preparation for tutorials and homework10
25
laboratoria
A-L-1Participation in laboratory classes18
A-L-2Preparation for laboratory exercises16
A-L-3Preparation of laboratory reports14
A-L-4Consultations2
50
wykłady
A-W-1Participation in lectures18
A-W-2Supplementary reading from literature20
A-W-3Preparation for the exam10
A-W-4Exam2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Informative lecture
M-2Problem-based lecture
M-3Laboratory exercises on professionally designed physical workstations

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Based on quizzes during laboratory classes
S-2Ocena podsumowująca: Written exam

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C20.2_W01
The student has basic knowledge of semiconductor power devices and their control methods, understands the basic topologies of DC-DC, AC-DC, DC-AC, and AC-AC converters, and can explain their operating principles.
EL_1A_W03, EL_1A_W04C-1, C-2T-A-5, T-W-4, T-A-2, T-W-8, T-W-5, T-W-1, T-W-3, T-A-4, T-W-2, T-A-3, T-W-7, T-A-1, T-W-6M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C20.2_U01
The student is able to select and perform basic calculations for a semiconductor power device used in a simple converter for energy conversion of the type AC-DC, DC-DC, DC-AC, or AC-AC.
EL_1A_U06, EL_1A_U08C-1, C-2T-L-1, T-L-8, T-L-7, T-L-9, T-L-4, T-L-3, T-L-6, T-L-2, T-L-5, T-L-10M-1, M-2, M-3S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C20.2_K01
The student actively, but to a minimal extent, performs tasks resulting from the division of work in the team
EL_1A_K01, EL_1A_K03C-1, C-2T-W-5, T-W-2, T-W-4, T-W-3, T-W-7, T-W-8, T-W-6, T-W-1M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C20.2_W01
The student has basic knowledge of semiconductor power devices and their control methods, understands the basic topologies of DC-DC, AC-DC, DC-AC, and AC-AC converters, and can explain their operating principles.
2,0Grade received when none of the following criteria required for a positive grade are met
3,0The student has basic knowledge of semiconductor power devices and their control methods, knows basic topologies of DC-DC, AC-DC, DC-AC, AC-AC converters, and can explain their operating principles
3,5The student can perform calculations of the relationships between input and output in steady-state conditions
4,0The student can synthesize power electronic circuits under specified operating conditions
4,5The student can derive relationships between variables (state equations) in an unsteady state
5,0The student can formulate the physical principles governing electrical processes in power electronic circuits

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C20.2_U01
The student is able to select and perform basic calculations for a semiconductor power device used in a simple converter for energy conversion of the type AC-DC, DC-DC, DC-AC, or AC-AC.
2,0The student does not meet any of the criteria required to receive a passing grade
3,0The student can select and perform basic calculations for a semiconductor power device in a simple converter performing energy conversion in AC-DC, DC-DC, DC-AC, AC-AC types
3,5The student can correctly sketch four out of five known DC-DC converter topologies
4,0The student can select components for basic DC-DC converters to achieve the desired input-output relationships
4,5The student can explain the concepts of selected power electronic systems, such as an inverter driving an induction motor
5,0The student can explain the physics of processes occurring in selected power electronic systems

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C20.2_K01
The student actively, but to a minimal extent, performs tasks resulting from the division of work in the team
2,0The student does not meet the criteria for a passing grade
3,0The student actively but minimally participates in the tasks arising from the division of labor in the team
3,5The student participates in the classes in a way that does not disturb other students. The student is present at most lectures
4,0Active participation in most lectures
4,5The student shows engagement in solving additional problems that increase their overall knowledge of the subject
5,0The student studies independently to gain deeper, beyond-program knowledge in the field of power electronics

Literatura podstawowa

  1. Tunia H., Winiarski B., Energoelektronika, WNT, Warszawa, 1994
  2. Nowak M., Barlik R., Poradnik inżyniera energoelektronika, WNT, Warszawa, 1998
  3. Biskup T., Gierlotka K.,Grzesik B.i inni, Energoelektronika, Wydawnictwo Politechniki Śląskiej, Gliwice, 2001
  4. Borecki J., Stosur M., Szkółka S., Energoelektronika, podstawy i wybrane zastosowania, OWPW, Wrocław, 2008

Literatura dodatkowa

  1. Hołub M., Kalisiak S., Bonisławski M., Materiały pomocnicze i uzupełniające, Strona internetowa Wydziału Elektrycznego ZUT, 2018
  2. Fabiański P., Pytlak A., Switek H., Pracownia układów energoelektronicznych, WSiP, Warszawa, 2008
  3. Firma, Elementy i podzespoły energoelektroniczne, Strony internetowe producentów elementów i podzespołów energoelektronicznych, 2012

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Rectifiers – calculation of average, RMS, and effective values of rectified voltage, voltage ripple for a given capacitance1
T-A-2Power transistors: thermal calculations – conduction and switching losses, junction temperature, heatsink2
T-A-3Buck converter – project (semiconductor components)2
T-A-4Buck converter – passive and magnetic components2
T-A-5Magnetic components – high-frequency transformer2
9

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Introduction to the laboratory1
T-L-2Rectifier testing – resistive load, capacitive load, passive PFC2
T-L-3Testing of MOSFET transistors and SiC diodes (measurement of parameters in on, off, and blocking states; effect of changes in gate circuit resistance and voltage on transistor properties in static states; effect of temperature on device characteristics)2
T-L-4DC-DC converter testing: buck converter2
T-L-5DC-DC converter testing: boost converter2
T-L-6Testing of an isolated DC-DC converter: flyback converter2
T-L-7Testing of an isolated converter: push-pull converter2
T-L-8Inverter testing: simulation model in PLECS and/or PSIM2
T-L-9Inverter testing: PWM modulator (simulated in PLECS and/or PSIM)2
T-L-10Simulation studies of a converter topology assigned by the instructor1
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Role and importance of power electronics in modern industry and economy; types of converters1
T-W-2Modern semiconductor power components – structure, operating principle, basic parameters1
T-W-3Thermal properties and parameters of semiconductor power components, power loss calculation, selection of cooling systems2
T-W-4Structure and construction of a power electronic converter, isolated triggering circuits for thyristors and control circuits for power transistors2
T-W-5AC-DC converter: uncontrolled and controlled rectifiers, single-phase and multi-phase with line commutation4
T-W-6DC-DC converter (periodic switch): Buck, Flyback and Boost converters2
T-W-7Basics of the output voltage and current shaping methods in inverters (PWM, harmonic elimination, vector control, reference waveform tracking)4
T-W-8Modern tools for analysis and computer-aided design (CAD) of power electronic converters2
18

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Participation in tutorials15
A-A-2Preparation for tutorials and homework10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Participation in laboratory classes18
A-L-2Preparation for laboratory exercises16
A-L-3Preparation of laboratory reports14
A-L-4Consultations2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures18
A-W-2Supplementary reading from literature20
A-W-3Preparation for the exam10
A-W-4Exam2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C20.2_W01The student has basic knowledge of semiconductor power devices and their control methods, understands the basic topologies of DC-DC, AC-DC, DC-AC, and AC-AC converters, and can explain their operating principles.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_W03Ma zaawansowaną, uporządkowaną i podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z obszaru elektrotechniki.
EL_1A_W04Ma szczegółową wiedzę związaną z wybranymi zagadnieniami w obszarze elektrotechniki.
Cel przedmiotuC-1Understanding the operating principles of power semiconductor devices
C-2Understanding the principles of operation of basic power electronic circuits
Treści programoweT-A-5Magnetic components – high-frequency transformer
T-W-4Structure and construction of a power electronic converter, isolated triggering circuits for thyristors and control circuits for power transistors
T-A-2Power transistors: thermal calculations – conduction and switching losses, junction temperature, heatsink
T-W-8Modern tools for analysis and computer-aided design (CAD) of power electronic converters
T-W-5AC-DC converter: uncontrolled and controlled rectifiers, single-phase and multi-phase with line commutation
T-W-1Role and importance of power electronics in modern industry and economy; types of converters
T-W-3Thermal properties and parameters of semiconductor power components, power loss calculation, selection of cooling systems
T-A-4Buck converter – passive and magnetic components
T-W-2Modern semiconductor power components – structure, operating principle, basic parameters
T-A-3Buck converter – project (semiconductor components)
T-W-7Basics of the output voltage and current shaping methods in inverters (PWM, harmonic elimination, vector control, reference waveform tracking)
T-A-1Rectifiers – calculation of average, RMS, and effective values of rectified voltage, voltage ripple for a given capacitance
T-W-6DC-DC converter (periodic switch): Buck, Flyback and Boost converters
Metody nauczaniaM-1Informative lecture
M-2Problem-based lecture
M-3Laboratory exercises on professionally designed physical workstations
Sposób ocenyS-1Ocena formująca: Based on quizzes during laboratory classes
S-2Ocena podsumowująca: Written exam
Kryteria ocenyOcenaKryterium oceny
2,0Grade received when none of the following criteria required for a positive grade are met
3,0The student has basic knowledge of semiconductor power devices and their control methods, knows basic topologies of DC-DC, AC-DC, DC-AC, AC-AC converters, and can explain their operating principles
3,5The student can perform calculations of the relationships between input and output in steady-state conditions
4,0The student can synthesize power electronic circuits under specified operating conditions
4,5The student can derive relationships between variables (state equations) in an unsteady state
5,0The student can formulate the physical principles governing electrical processes in power electronic circuits
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C20.2_U01The student is able to select and perform basic calculations for a semiconductor power device used in a simple converter for energy conversion of the type AC-DC, DC-DC, DC-AC, or AC-AC.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_U06Potrafi pozyskiwać, przesyłać, przetwarzać dane, podsumowywać wyniki eksperymentów empirycznych, dokonywać interpretacji uzyskanych wyników i formułować wynikające z nich wnioski.
EL_1A_U08Potrafi rozwiązywać zadania i problemy występujące w obszarze elektrotechniki z wykorzystaniem metod i narzędzi inżynierskich w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1Understanding the operating principles of power semiconductor devices
C-2Understanding the principles of operation of basic power electronic circuits
Treści programoweT-L-1Introduction to the laboratory
T-L-8Inverter testing: simulation model in PLECS and/or PSIM
T-L-7Testing of an isolated converter: push-pull converter
T-L-9Inverter testing: PWM modulator (simulated in PLECS and/or PSIM)
T-L-4DC-DC converter testing: buck converter
T-L-3Testing of MOSFET transistors and SiC diodes (measurement of parameters in on, off, and blocking states; effect of changes in gate circuit resistance and voltage on transistor properties in static states; effect of temperature on device characteristics)
T-L-6Testing of an isolated DC-DC converter: flyback converter
T-L-2Rectifier testing – resistive load, capacitive load, passive PFC
T-L-5DC-DC converter testing: boost converter
T-L-10Simulation studies of a converter topology assigned by the instructor
Metody nauczaniaM-1Informative lecture
M-2Problem-based lecture
M-3Laboratory exercises on professionally designed physical workstations
Sposób ocenyS-1Ocena formująca: Based on quizzes during laboratory classes
Kryteria ocenyOcenaKryterium oceny
2,0The student does not meet any of the criteria required to receive a passing grade
3,0The student can select and perform basic calculations for a semiconductor power device in a simple converter performing energy conversion in AC-DC, DC-DC, DC-AC, AC-AC types
3,5The student can correctly sketch four out of five known DC-DC converter topologies
4,0The student can select components for basic DC-DC converters to achieve the desired input-output relationships
4,5The student can explain the concepts of selected power electronic systems, such as an inverter driving an induction motor
5,0The student can explain the physics of processes occurring in selected power electronic systems
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C20.2_K01The student actively, but to a minimal extent, performs tasks resulting from the division of work in the team
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_K01Jest gotów do krytycznej oceny posiadanej wiedzy oraz ma świadomość jej znaczenia w procesie rozwiązywania szeregu problemów inżynierskich i technicznych w zakresie elektrotechniki oraz kierunków pokrewnych.
EL_1A_K03Jest gotów do podjęcia społecznej, zawodowej i etycznej odpowiedzialności za pełnione role zawodowe.
Cel przedmiotuC-1Understanding the operating principles of power semiconductor devices
C-2Understanding the principles of operation of basic power electronic circuits
Treści programoweT-W-5AC-DC converter: uncontrolled and controlled rectifiers, single-phase and multi-phase with line commutation
T-W-2Modern semiconductor power components – structure, operating principle, basic parameters
T-W-4Structure and construction of a power electronic converter, isolated triggering circuits for thyristors and control circuits for power transistors
T-W-3Thermal properties and parameters of semiconductor power components, power loss calculation, selection of cooling systems
T-W-7Basics of the output voltage and current shaping methods in inverters (PWM, harmonic elimination, vector control, reference waveform tracking)
T-W-8Modern tools for analysis and computer-aided design (CAD) of power electronic converters
T-W-6DC-DC converter (periodic switch): Buck, Flyback and Boost converters
T-W-1Role and importance of power electronics in modern industry and economy; types of converters
Metody nauczaniaM-1Informative lecture
M-2Problem-based lecture
Sposób ocenyS-1Ocena formująca: Based on quizzes during laboratory classes
S-2Ocena podsumowująca: Written exam
Kryteria ocenyOcenaKryterium oceny
2,0The student does not meet the criteria for a passing grade
3,0The student actively but minimally participates in the tasks arising from the division of labor in the team
3,5The student participates in the classes in a way that does not disturb other students. The student is present at most lectures
4,0Active participation in most lectures
4,5The student shows engagement in solving additional problems that increase their overall knowledge of the subject
5,0The student studies independently to gain deeper, beyond-program knowledge in the field of power electronics