Wydział Elektryczny - Automatyka i robotyka (N1)
Sylabus przedmiotu Metody sztucznej inteligencji i inżynierii wiedzy:
Informacje podstawowe
Kierunek studiów | Automatyka i robotyka | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Metody sztucznej inteligencji i inżynierii wiedzy | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Automatyki Przemysłowej i Robotyki | ||
Nauczyciel odpowiedzialny | Krzysztof Jaroszewski <Krzysztof.Jaroszewski@zut.edu.pl> | ||
Inni nauczyciele | Bogdan Grzywacz <Bogdan.Grzywacz@zut.edu.pl>, Krzysztof Jaroszewski <Krzysztof.Jaroszewski@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | znajomość matematyki, w szczególności rachunku macierzowego, różniczkowego i całkowego, oraz podstaw logiki matematycznej |
W-2 | Znajomość matematyki, w szczególności rachunku macierzowego, różniczkowego i całkowego, oraz podstaw logiki matematycznej |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studenta z terminologią związaną z algorytmami genetycznymi. |
C-2 | Zaprezentowanie studentowi sposobu działania klasycznego algorytmu genetycznego. |
C-3 | Przedstawienie studentowi innych technik ewolucyjnych. |
C-4 | Pokazanie studentowi analogii i różnic pomiędzy neuronem biologicznym i sztucznym. |
C-5 | Zapoznanie studenta z algorytmami uczenia sztucznych sieci neuronowych. |
C-6 | Przedstawienie studentowi różnych struktur neuronowych. |
C-7 | Wykształcenie u studenta umiejętności wyznaczania granicy decyzyjnej sieci perceptronowej. |
C-8 | Ukształtowanie u studenta umiejętności stosowania sieci neuronowych do rozwiązania zadania aproksymacji. |
C-9 | Wyrobienie u studenta umiejętności projektowania sieci neuronowych do rozwiązywania zadania rozpoznawania wzorców. |
C-10 | Wykształcenie u studenta umiejętności programowania funkcji służących do zbudowania klasycznego algorytmu genetycznego. |
C-11 | Rozbudzenie u studenta potrzeby ciągłego dokształcania się i podnoszenia kompetencji zawodowych, osobistych i społecznych. |
C-12 | Wykształcenie u studenta umiejetności reprezentacji wiedzy dziedzinowej w sposób nadający się do automatyzacji wnioskowania. |
C-13 | Zapoznanie studenta z różnymi typami baz wiedzy i wnioskowań używanych w systemach ekspertowych. |
C-14 | Wykształcenie u studenta umiejętności posługiwania się techniką "fuzzy-logic". |
C-15 | Wykształcenie u studenta elementarnych umiejętności umożliwiających indukcyjne generowanie wiedzy (reguł) z przykładów i tablic decyzyjnych. |
C-16 | Wykształcenie umiejętności tworzenia regułowych systemów ekspertowych, wnioskowania w technice "fuzzy logic" i ekstrakcji wiedzy z danych liczbowych |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Wyznaczanie granicy decyzyjnej w sieci perceptronowej. | 2 |
T-L-2 | Sieć wielowarstwowa jako aproksymator. | 3 |
T-L-3 | Sieci neuronowe w zadaniu rozpoznawania wzorców. | 3 |
T-L-4 | Zaliczenie formy zajęć. | 2 |
T-L-5 | Wnioskowania dokładne i niepewne "w przód" , "wstecz" z użyciem skorupowego systemu ekspertowego. | 2 |
T-L-6 | Wnioskowania w logice "fuzzy-logic" z użyciem programu MATLAB. | 2 |
T-L-7 | Indukcja reguł w oparciu o dane zawarte w tablicach decyzyjnych | 3 |
T-L-8 | Zaliczenie formy zajęć. | 1 |
18 | ||
projekty | ||
T-P-1 | Realizacja algorytmu genetycznego w środowisku programistycznym. | 3 |
3 | ||
wykłady | ||
T-W-1 | Inteligencja. Wprowadzenie do zagadnień sztucznej inteligencji. | 1 |
T-W-2 | Podstawowe informacje dotyczące technik ewolucynych. Schematy w algorytmach genetycznych. | 1 |
T-W-3 | Klasyczny algorytm genetyczny. Kodowanie, selekcja, krzyżowanie, mutacja, inwersja. Przykład działania klasycznego algorytmu genetycznego. | 1 |
T-W-4 | Strategie ewolucyjne. programowanie ewolucyjne i genetyczne. | 1 |
T-W-5 | Podstawowe informacje o sztucznych sieciach neuronowych. model McCulloch'a-Pitts'a sztucznego neuronu. Perceptron - najprostsza sieć neuronowa. Reguła DELTA uczenia perceptronu. | 1 |
T-W-6 | Przykład korekcji współczynników wagowych w procesie uczenia sieci perceptronowej. | 1 |
T-W-7 | Sieci wielowarstwowe. Uczenie sieci wielowarstwowych. Algorytm wstecznej propagacji błędu. | 1 |
T-W-8 | Sieci rekurencyjne. Sieci samoorganizujące. | 1 |
T-W-9 | Struktura funkcjonalna systemu ekspertowego. Dedykowane i skorupowe systemy ekspertowe. Struktura regułowych baz wiedzy. | 1 |
T-W-10 | Implikacja regułowa i zasady wnioskowania "w przód" i "wstecz" w elementarnych dokładnych i rozwiniętych dokładnych bazach reguł. Sprzeczności i nadmiarowości w bazach reguł. | 1 |
T-W-11 | Reprezentacja wiedzy niepewnej przy pomocy współczynników niepewności CF (certainty factors). "Algebra" współczynników pewności dla reguł kumulatywnych i dysjunktywnych. Wnioskowanie elementarne niepewne i rozwinięte niepewne "w przód" i "wstecz". | 1 |
T-W-12 | Reprezentacja wiedzy i wnioskowanie dla modeli: Mamdaniego i logicznego. Generowanie reguł z przykładów - metoda pokryć, drzewa decyzyjnego. | 1 |
T-W-13 | Rozmyte systemy wnioskujące: rozmywanie, wnioskowanie, wyostrzanie. | 1 |
T-W-14 | Generowanie reguł z tablic decyzyjnych z użyciem technik bazujących na teorii zbiorów przybliżonych. | 1 |
T-W-15 | Sposoby i cel ustawicznego poszerzania wiedzy i kompetencji. | 1 |
T-W-16 | Strategie ewolucyjne. Programowanie ewolucyjne i genetyczne. | 1 |
T-W-17 | Podstawowe informacje o sztucznych sieciach neuronowych. Model McCulloch'a-Pitts'a sztucznego neuronu. Perceptron - najprostsza sieć neuronowa. Reguła DELTA uczenia perceptronu. | 1 |
T-W-18 | Reprezentacja wiedzy i wnioskowanie dla modeli: Mamdaniego i logicznego. Generowanie reguł z przykładów - metoda pokryć, metoda drzewa decyzyjnego. | 1 |
18 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestniczenie w zajęciach | 18 |
A-L-2 | Wykonanie sprawozdań | 12 |
30 | ||
projekty | ||
A-P-1 | Uczestniczenie w zajęciach | 3 |
A-P-2 | Praca własna nad projektem | 57 |
60 | ||
wykłady | ||
A-W-1 | Uczestniczenie w zajęciach | 18 |
A-W-2 | Studiowanie literatury | 24 |
A-W-3 | Przygotowanie do egzaminu | 18 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | wykład informacyjny |
M-2 | wykład problemowy |
M-3 | ćwiczenia laboratoryjne |
M-4 | z użyciem komputera |
M-5 | metoda projektów |
M-6 | zachęcenie do pogłębienia wiedzy i rozszerzenia umiejętności |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: na podstawie obserwacji pracy w grupie |
S-2 | Ocena podsumowująca: na podstawie sprawozdań |
S-3 | Ocena podsumowująca: na podstawie prezentacji rezultaów pracy i dokumentacji powykonawczej |
S-4 | Ocena podsumowująca: na podstawie egzaminu pisemnego i ustnego |
S-5 | Ocena formująca: dyskusja dydaktyczna |
S-6 | Ocena formująca: obserwacja postępów i zaangażowania w pracę zespołu |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C09_W01 Student: - definiuje podstawowe pojęcia stosowane w tematyce sztucznej inteligencji, sztucznych sieci neuronowych i technik ewolucyjnych, - prezentuje model sztucznego neuronu i odnosi go do budowy neuronu naturalnego, - przedstawia klasyczny algorytm genetyczny. | AR_1A_W08 | T1A_W04 | — | C-1, C-2, C-3, C-4, C-5, C-6 | T-W-7, T-W-2, T-W-1, T-W-5, T-W-8, T-W-4, T-W-3, T-W-6, T-W-17, T-W-16 | M-1, M-2, M-4 | S-4 |
AR_1A_C09_W02 Student opanował materiał dotyczący regułowej reprezentacji wiedzy w logice "zero-jedynkowej" i zasady wnioskowania "w przód", "wstecz" w tego typu bazach reguł. Rozumie, na czym polegają sprzeczności i nadmiarowości w bazach reguł. Zna sposoby reprezentacji wiedzy i wnioskowania w technice "fuzzy logic". | AR_1A_W08 | T1A_W04 | — | C-13, C-16 | T-W-12, T-W-10, T-W-11, T-W-13, T-W-9, T-W-14, T-W-15, T-W-18 | M-1, M-2, M-4 | S-4, S-5 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C09_U01 Student: - potrafi wykreślić granicę decyzyjną prostego perceptronu, - umie zadeklarować prostą sieć neuronową zgonie z poleceniami, - posługuje się graficznym narzędziem do optymalizacji przy użyciu algorytmów genetycznych, - potrafi zadeklarować funkcje kodowania, krzyżowania i mutacji w środowisku programistycznym. | AR_1A_U16 | T1A_U13, T1A_U15, T1A_U16 | InzA_U05, InzA_U07, InzA_U08 | C-7, C-8, C-9, C-10 | T-L-1, T-L-2, T-L-3, T-P-1 | M-3, M-4, M-5 | S-1, S-2, S-3 |
AR_1A_C09_U02 Student potrafi napisać program zgodnie z paradygmatem regułowego systemu ekspertowego (np. diagnostycznego czy realizującego klasyfikację), umie też "świadomie" posługiwać się programami będącymi skorupowymi systemami ekspertowymi (tzw. program typu "shell" ). | AR_1A_U21 | T1A_U09, T1A_U10 | — | C-12, C-14, C-15 | T-L-5, T-L-6, T-L-7, T-L-4 | M-3, M-4, M-5 | S-1, S-2, S-3, S-6 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C09_K01 Student zna sposoby podnoszenia swoich kompetencji. | AR_1A_K01 | T1A_K01 | — | C-11 | T-W-15 | M-6 | S-1, S-2, S-3, S-4 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C09_W01 Student: - definiuje podstawowe pojęcia stosowane w tematyce sztucznej inteligencji, sztucznych sieci neuronowych i technik ewolucyjnych, - prezentuje model sztucznego neuronu i odnosi go do budowy neuronu naturalnego, - przedstawia klasyczny algorytm genetyczny. | 2,0 | |
3,0 | Student: - definiuje podstawowe pojęcia stosowane w tematyce sztucznej inteligencji, sztucznych sieci neuronowych i technik ewolucyjnych, - prezentuje model sztucznego neuronu i odnosi go do budowy neuronu naturalnego, - przedstawia klasyczny algorytm genetyczny. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
AR_1A_C09_W02 Student opanował materiał dotyczący regułowej reprezentacji wiedzy w logice "zero-jedynkowej" i zasady wnioskowania "w przód", "wstecz" w tego typu bazach reguł. Rozumie, na czym polegają sprzeczności i nadmiarowości w bazach reguł. Zna sposoby reprezentacji wiedzy i wnioskowania w technice "fuzzy logic". | 2,0 | |
3,0 | Student opanował materiał dotyczący regułowej reprezentacji wiedzy w logice "zero-jedynkowej" i zasady wnioskowania "w przód", "wstecz" w tego typu bazach reguł. Rozumie, na czym polegają sprzeczności i nadmiarowości w bazach reguł. Zna sposoby reprezentacji wiedzy i wnioskowania w technice "fuzzy logic" | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C09_U01 Student: - potrafi wykreślić granicę decyzyjną prostego perceptronu, - umie zadeklarować prostą sieć neuronową zgonie z poleceniami, - posługuje się graficznym narzędziem do optymalizacji przy użyciu algorytmów genetycznych, - potrafi zadeklarować funkcje kodowania, krzyżowania i mutacji w środowisku programistycznym. | 2,0 | |
3,0 | Student: - potrafi wykreślić granicę decyzyjną prostego perceptronu, - umie zadeklarować prostą sieć neuronową zgodnie z poleceniami, - posługuje się graficznym narzędziem do optymalizacji przy użyciu algorytmów genetycznych, - potrafi zadeklarować funkcje kodowania, krzyżowania i mutacji w środowisku programistycznym. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
AR_1A_C09_U02 Student potrafi napisać program zgodnie z paradygmatem regułowego systemu ekspertowego (np. diagnostycznego czy realizującego klasyfikację), umie też "świadomie" posługiwać się programami będącymi skorupowymi systemami ekspertowymi (tzw. program typu "shell" ). | 2,0 | |
3,0 | Student potrafi napisać program zgodnie z paradygmatem regułowego systemu ekspertowego (np. diagnostycznego czy realizującego klasyfikację), umie też "świadomie" posługiwać się programami będącymi skorupowymi systemami ekspertowymi (tzw. program typu "shell" ). | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C09_K01 Student zna sposoby podnoszenia swoich kompetencji. | 2,0 | |
3,0 | Student zna sposoby podnoszenia swoich kompetencji. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Mariusz Flasiński, Wstęp do sztucznej inteligencji, PWN, Warszawa, 2011, pierwsze, ISBN: 978-83-01-16663-2
- Rutkowski L., Metody i techniki sztucznej inteligencji, PWN, Warszawa, 2005
- D. Rutkowska, M. Piliński, L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa, 1997
- Niederliński Antoni, Regułowo-modelowe systemy ekspertowe rmse, Wydawnictwo Pracowni Komputerowej Jaska Skalmierskiego, Gliwice, 2006, ISBN 83-89105-96-9
- Mulawka J., Systemy ekspertowe., Wydawnictwo Naukowo-Techniczne, Warszawa, 1996
- Mrózek A., Płonka L., Analiza danych metodą zbiorów przybliżonych. Zastosowania w ekonomii, medycynie i sterowaniu, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1999
Literatura dodatkowa
- Negnevitsky Michael, Artificial Intelligence: A Guide to Intelligent Systems, Addison Wesley, Wssex, 2005, second edition
- Harmelen F.,Liofschitz V., Porter B. - editors, Handbook of Knowledge Representation, Elsevier, Amsterdam- New York- Tokyo, 2008, ISBN 978-444-52211-5
- Korbicz J., Koscielny J.,Kowalczuk Z., Cholewa W. -redakcja, Diagnostyka procesów. Modele , Metody sztucznej inteligencji, Zastosowania., Wydawnictwo Naukowo-Techniczne, Warszawa, 2002