Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Biotechnologii i Hodowli Zwierząt - Biotechnologia (S2)
specjalność: Bioinżynieria produkcji żywności

Sylabus przedmiotu Molekularne podstawy ewolucji:

Informacje podstawowe

Kierunek studiów Biotechnologia
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauki rolnicze, leśne i weterynaryjne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Molekularne podstawy ewolucji
Specjalność Biotechnologia w produkcji roślinnej
Jednostka prowadząca Katedra Genetyki, Hodowli i Biotechnologii Roślin
Nauczyciel odpowiedzialny Piotr Masojć <Piotr.Masojc@zut.edu.pl>
Inni nauczyciele Beata Myśków <Beata.Myskow@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 1 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 15 1,00,59zaliczenie
ćwiczenia audytoryjneA1 15 1,00,41zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Biologia molekularna

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Rozumienie procesów ewolucyjnych zachodzących na poziomie molekularnym oraz umiejętnośc odczytywania drzew filogenetycznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Metody konstrukcji drzew filogenetycznych6
T-A-2Metody oceny podobieństwa genetycznego i odległości genetycznej4
T-A-3Ewolucja wybranych grup organizmów w oparciu o dane molekularne4
T-A-4Sprawdzian zaliczeniowy1
15
wykłady
T-W-1Teorie na temat prebiotycznej fazy ewolucji2
T-W-2Ewolucja białek: zegar molekularny, zmiany w białkach o wolnym tempie ewolucji1
T-W-3rola duplikacji i gromadzenia zmian mutacyjnych w ewolucji globin, proteaz serynowych i hormonów przyssadki mózgowej2
T-W-4Tasowanie egzonów, białka wielodomenowe, alternatywny splicing, redagowanie RNA jako mechanizmy zwiększające repertuar białek w trakcie ewolucji2
T-W-5Rola intronów i zmian ich liczby w ewolucji. Inteiny i eksteiny białkowe, introny a inteiny2
T-W-6Rola transpozonów w ewolucji, rearanżacje w genach immunoglobin2
T-W-7Ewolucja kompleksu genów Hox u Metazoa, kooptacja genów2
T-W-8Analiza DNA mitochondrialnego i chromosomu Y jako metody badania historii Homo sapiens2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w ćwiczeniach15
A-A-2Przygotowanie samodzielne do ćwiczeń5
A-A-3opracowanie referatu8
A-A-4przygotowanie do zaliczenia ćwiczeń2
30
wykłady
A-W-1uczestnictwo w wykładach15
A-W-2samodzielne opanowanie materiału z wykładów9
A-W-3Przygotowanie do zaliczenia wykładów5
A-W-4zaliczenie wykładów1
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1wykład informacyjny
M-2prezentacja multimedialna z użyciem komputera i rzutnika
M-3film

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: test z wykładów 15 pytań szczegółowych
S-2Ocena podsumowująca: zaliczenie ćwiczeń na podstawie sprawdzianu i realizacji zadań praktycznych

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BT_2A_BTR-S-O1.2_W01
student wyjaśnia mechanizmy ewolucyjne prowadzące do wzrostu złożoności białek w organizmach żywych
BT_2A_W06, BT_2A_W07C-1T-A-1, T-A-2, T-A-3, T-W-1, T-W-3, T-W-4, T-W-6, T-W-7, T-W-5, T-W-8, T-W-2M-1, M-2, M-3S-2, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BT_2A_BTR-S-O1.2_U01
Odczytuje znaczenie drzew filogenetycznych i umie je konstruować
BT_2A_U06C-1T-A-1M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BT_2A_BTR-S-O1.2_K01
świadomie wiąże mechanizmy molekularne z procesami ewolucji na poziomie fenotypu
BT_2A_K02C-1T-W-3, T-W-4, T-W-6, T-W-7, T-W-5, T-W-2M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
BT_2A_BTR-S-O1.2_W01
student wyjaśnia mechanizmy ewolucyjne prowadzące do wzrostu złożoności białek w organizmach żywych
2,0nie umie wyjaśnić żadnych mechanizmów
3,0w podstawowym stopniu wyjaśnia szereg mechanizmów
3,5w podstawowym stopniu wyjaśnia wszystkie omawiane mechanizmy
4,0szczegółowo wyjaśnia większość omawianych mechanizmów
4,5szczegółowo wyjasnia wszystkie omawiane mechanizmy
5,0wyjaśnia w sposób wyczerpujący tematykę wszystkich omawianych mechanizmów

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
BT_2A_BTR-S-O1.2_U01
Odczytuje znaczenie drzew filogenetycznych i umie je konstruować
2,0nie rozumie znaczenia drzew filogenetycznych
3,0rozumie znaczenie drzew filogenetycznych
3,5rozumie znaczenie drzew i umie je odczytywać
4,0umie konstruować drzewa filogenetyczne
4,5zna różne sposoby konstrukcji drzew filogenetycznych
5,0zna większość sposobów konstrukcji drzew filogenetycznych

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
BT_2A_BTR-S-O1.2_K01
świadomie wiąże mechanizmy molekularne z procesami ewolucji na poziomie fenotypu
2,0nie tłumaczy ewolucji mechanizmami molekularnymi
3,0tłumaczy w minimalnym stopniu ewolucję mechanizmami molekularnymi
3,5tłumaczy w zadowalającym stopniu ewolucję mechanizmami molekularnymi
4,0tłumaczy w szczegółowy sposób ewolucję mechanizmami molekularnymi
4,5tłumaczy biegle ewolucję mechanizmami molekularnymi
5,0tłumaczy dogłębnie ewolucję mechanizmami molekularnymi

Literatura podstawowa

  1. Douglas J. Futuyma, Ewolucja, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 2008
  2. A. Kubicz, Tajemnice ewolucji molekularnej, Wydawnictwo Naukowe PWN, Warszawa, 1999

Literatura dodatkowa

  1. T.A. Brown, Genomy, Wydawnictwo Naukowe PWN, Warszawa, 2009
  2. J.A.Avise, Markery molekularne, historia naturalna i ewolucja, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 2007
  3. B.G.Hall, Łatwe drzewa filogenetyczne. poradnik uzytkownika, Wydawnictwo Naukowe Uniwersytetu Warszawskiego, Warszawa, 2006

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Metody konstrukcji drzew filogenetycznych6
T-A-2Metody oceny podobieństwa genetycznego i odległości genetycznej4
T-A-3Ewolucja wybranych grup organizmów w oparciu o dane molekularne4
T-A-4Sprawdzian zaliczeniowy1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Teorie na temat prebiotycznej fazy ewolucji2
T-W-2Ewolucja białek: zegar molekularny, zmiany w białkach o wolnym tempie ewolucji1
T-W-3rola duplikacji i gromadzenia zmian mutacyjnych w ewolucji globin, proteaz serynowych i hormonów przyssadki mózgowej2
T-W-4Tasowanie egzonów, białka wielodomenowe, alternatywny splicing, redagowanie RNA jako mechanizmy zwiększające repertuar białek w trakcie ewolucji2
T-W-5Rola intronów i zmian ich liczby w ewolucji. Inteiny i eksteiny białkowe, introny a inteiny2
T-W-6Rola transpozonów w ewolucji, rearanżacje w genach immunoglobin2
T-W-7Ewolucja kompleksu genów Hox u Metazoa, kooptacja genów2
T-W-8Analiza DNA mitochondrialnego i chromosomu Y jako metody badania historii Homo sapiens2
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w ćwiczeniach15
A-A-2Przygotowanie samodzielne do ćwiczeń5
A-A-3opracowanie referatu8
A-A-4przygotowanie do zaliczenia ćwiczeń2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w wykładach15
A-W-2samodzielne opanowanie materiału z wykładów9
A-W-3Przygotowanie do zaliczenia wykładów5
A-W-4zaliczenie wykładów1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBT_2A_BTR-S-O1.2_W01student wyjaśnia mechanizmy ewolucyjne prowadzące do wzrostu złożoności białek w organizmach żywych
Odniesienie do efektów kształcenia dla kierunku studiówBT_2A_W06ma szczegółową i uporządkowaną wiedzę z zakresu wykorzystania procesów molekularnych, enzymatycznych i fizjologicznych organizmów żywych w biotechnologii
BT_2A_W07wykazuje pogłębioną wiedzę na temat budowy, funkcji oraz analizy komputerowej genów i genomów, metod dziedziczenia, jak również wpływu czynników genetycznych na kształtowanie środowiska
Cel przedmiotuC-1Rozumienie procesów ewolucyjnych zachodzących na poziomie molekularnym oraz umiejętnośc odczytywania drzew filogenetycznych
Treści programoweT-A-1Metody konstrukcji drzew filogenetycznych
T-A-2Metody oceny podobieństwa genetycznego i odległości genetycznej
T-A-3Ewolucja wybranych grup organizmów w oparciu o dane molekularne
T-W-1Teorie na temat prebiotycznej fazy ewolucji
T-W-3rola duplikacji i gromadzenia zmian mutacyjnych w ewolucji globin, proteaz serynowych i hormonów przyssadki mózgowej
T-W-4Tasowanie egzonów, białka wielodomenowe, alternatywny splicing, redagowanie RNA jako mechanizmy zwiększające repertuar białek w trakcie ewolucji
T-W-6Rola transpozonów w ewolucji, rearanżacje w genach immunoglobin
T-W-7Ewolucja kompleksu genów Hox u Metazoa, kooptacja genów
T-W-5Rola intronów i zmian ich liczby w ewolucji. Inteiny i eksteiny białkowe, introny a inteiny
T-W-8Analiza DNA mitochondrialnego i chromosomu Y jako metody badania historii Homo sapiens
T-W-2Ewolucja białek: zegar molekularny, zmiany w białkach o wolnym tempie ewolucji
Metody nauczaniaM-1wykład informacyjny
M-2prezentacja multimedialna z użyciem komputera i rzutnika
M-3film
Sposób ocenyS-2Ocena podsumowująca: zaliczenie ćwiczeń na podstawie sprawdzianu i realizacji zadań praktycznych
S-1Ocena podsumowująca: test z wykładów 15 pytań szczegółowych
Kryteria ocenyOcenaKryterium oceny
2,0nie umie wyjaśnić żadnych mechanizmów
3,0w podstawowym stopniu wyjaśnia szereg mechanizmów
3,5w podstawowym stopniu wyjaśnia wszystkie omawiane mechanizmy
4,0szczegółowo wyjaśnia większość omawianych mechanizmów
4,5szczegółowo wyjasnia wszystkie omawiane mechanizmy
5,0wyjaśnia w sposób wyczerpujący tematykę wszystkich omawianych mechanizmów
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBT_2A_BTR-S-O1.2_U01Odczytuje znaczenie drzew filogenetycznych i umie je konstruować
Odniesienie do efektów kształcenia dla kierunku studiówBT_2A_U06Potrafi wykorzystać techniki molekularne stosowane w taksonomii roślin, zwierząt i ludzi; rozumie budowę i funkcje genomu oraz transkryptomu organizmów eukariotycznych i prokariotycznych; zna procesy dziedziczenia i rozwoju organizmu; wykorzystuje metody molekularne w biotechnologii stosowanej; rozumie molekularne podstawy ewolucji; zna czynniki wpływające na zmienność organizmu.
Cel przedmiotuC-1Rozumienie procesów ewolucyjnych zachodzących na poziomie molekularnym oraz umiejętnośc odczytywania drzew filogenetycznych
Treści programoweT-A-1Metody konstrukcji drzew filogenetycznych
Metody nauczaniaM-2prezentacja multimedialna z użyciem komputera i rzutnika
Sposób ocenyS-2Ocena podsumowująca: zaliczenie ćwiczeń na podstawie sprawdzianu i realizacji zadań praktycznych
Kryteria ocenyOcenaKryterium oceny
2,0nie rozumie znaczenia drzew filogenetycznych
3,0rozumie znaczenie drzew filogenetycznych
3,5rozumie znaczenie drzew i umie je odczytywać
4,0umie konstruować drzewa filogenetyczne
4,5zna różne sposoby konstrukcji drzew filogenetycznych
5,0zna większość sposobów konstrukcji drzew filogenetycznych
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBT_2A_BTR-S-O1.2_K01świadomie wiąże mechanizmy molekularne z procesami ewolucji na poziomie fenotypu
Odniesienie do efektów kształcenia dla kierunku studiówBT_2A_K02wykazuje zrozumienie procesów biotechnologicznych wykorzystywanych w różnych obszarach działalności człowieka; interpretuje i opisuje te procesy wykorzystując podejście naukowe
Cel przedmiotuC-1Rozumienie procesów ewolucyjnych zachodzących na poziomie molekularnym oraz umiejętnośc odczytywania drzew filogenetycznych
Treści programoweT-W-3rola duplikacji i gromadzenia zmian mutacyjnych w ewolucji globin, proteaz serynowych i hormonów przyssadki mózgowej
T-W-4Tasowanie egzonów, białka wielodomenowe, alternatywny splicing, redagowanie RNA jako mechanizmy zwiększające repertuar białek w trakcie ewolucji
T-W-6Rola transpozonów w ewolucji, rearanżacje w genach immunoglobin
T-W-7Ewolucja kompleksu genów Hox u Metazoa, kooptacja genów
T-W-5Rola intronów i zmian ich liczby w ewolucji. Inteiny i eksteiny białkowe, introny a inteiny
T-W-2Ewolucja białek: zegar molekularny, zmiany w białkach o wolnym tempie ewolucji
Metody nauczaniaM-2prezentacja multimedialna z użyciem komputera i rzutnika
Sposób ocenyS-2Ocena podsumowująca: zaliczenie ćwiczeń na podstawie sprawdzianu i realizacji zadań praktycznych
Kryteria ocenyOcenaKryterium oceny
2,0nie tłumaczy ewolucji mechanizmami molekularnymi
3,0tłumaczy w minimalnym stopniu ewolucję mechanizmami molekularnymi
3,5tłumaczy w zadowalającym stopniu ewolucję mechanizmami molekularnymi
4,0tłumaczy w szczegółowy sposób ewolucję mechanizmami molekularnymi
4,5tłumaczy biegle ewolucję mechanizmami molekularnymi
5,0tłumaczy dogłębnie ewolucję mechanizmami molekularnymi