Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Inżynieria cyfryzacji (S1)
specjalność: Zastosowania informatyki

Sylabus przedmiotu Matematyka stosowana ze statystyką I:

Informacje podstawowe

Kierunek studiów Inżynieria cyfryzacji
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Matematyka stosowana ze statystyką I
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Joanna Banaś <Joanna.Banas@zut.edu.pl>
Inni nauczyciele Małgorzata Machowska-Szewczyk <Malgorzata.Machowska.Szewczyk@zut.edu.pl>, Dorota Majorkowska-Mech <Dorota.Majorkowska-Mech@zut.edu.pl>, Małgorzata Pelczar <Malgorzata.Pelczar@zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 30 3,00,41zaliczenie
wykładyW1 30 3,00,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zakres matematyki szkoły średniej na poziomie podstawowym

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawowymi metodami analizy matematycznej i algebry liniowej wykorzystywanymi w rozwiązywaniu problemów z zakresu inżynierii cyfryzacji
C-2Ukształtowanie umiejętności wykorzystania metod analizy matematycznej i algebry liniowej w rozwiązywaniu zadań z zakresu inżynierii cyfryzacji
C-3Ukształtowanie umiejętności wykorzystywania narzędzi informatycznych przy rozwiązywaniu zadań z analizy matematycznej i algebry liniowej

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Liczby zespolone3
T-A-2Przestrzenie wektorowe2
T-A-3Macierze i wyznaczniki2
T-A-4Układy równań4
T-A-5Kolokwium2
T-A-6Ciągi liczbowe2
T-A-7Szeregi liczbowe3
T-A-8Funkcje2
T-A-9Granica i ciągłość funkcji2
T-A-10Pochodna funkcji2
T-A-11Zastosowania pierwszej pochodnej2
T-A-12Kolokwium4
30
wykłady
T-W-1Wstęp do algebry liniowej – działanie, grupa, ciało1
T-W-2Liczby zespolone – postacie liczby zespolonej, działania na liczbach zespolonych, rozwiązywanie równań w liczbach zespolonych1
T-W-3Repetytorium - funkcje trygonometryczne, wzory redukcyjne, związki trygonometryczne, tożsamości trygonometryczne, równania i nierówności trygonometryczne3
T-W-4Przestrzenie wektorowe - definicja, kombinacja liniowa wektorów, powłoka liniowa, liniowa zależność i niezależność wektorów, baza i wymiar przestrzeni, macierze i działania na macierzach3
T-W-5Repetytorium - działania na wektorach, układy równań (metoda podstawiania i przeciwnych współczynników), działania na wielomianach3
T-W-6Układy równań - wyznacznik macierzy, macierz odwrotna, równania macierzowe, układ Cramera, własności rzędu macierzy, twierdzenie Koneckera-Capelli'ego, układ jednorodny, metoda Gaussa3
T-W-7Ciągi - monotoniczność, granica, ciągi specjalne1
T-W-8Szeregi liczbowe - geometryczne, harmoniczne, przemienne, kryteria zbieżnosci1
T-W-9Repetytorium - własności potęg i pierwiastków, silnia, ciągi monotoniczne, ciągi arytmetyczne i geometryczne, suma wyrazów ciągu geometrycznego i arytmetycznego3
T-W-10Funkcje - definicja, własności, granice (kryterium ciągowe Heine'go), ciągłość2
T-W-11Repetytorium - postać kanoniczna funkcji, przekształcanie wykresu funkcji, funkcja kwadratowa i jej własności, równania i nierówności kwadratowe2
T-W-12Różniczkowanie - pochodna funkcji, ekstremum lokalne, twierdzenia Fermata, Rolle'a, Lagrange'a, monotoniczność funkcji, reguła de l'Hospitala3
T-W-13Repetytorium - rozkład wielomianu na czynniki, schemat Hornera, równania i nierówności wielomianowe, upraszczanie wyrażeń wymiernych, równania i nierówności wymierne4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Udział w ćwiczeniach30
A-A-2Samodzielne rozwiązywanie zadań60
90
wykłady
A-W-1Uczestnictwo w wykładach15
A-W-2Uczestnictwo w repetytorium15
A-W-3Studiowanie literatury23
A-W-4Przygotowanie do egzaminu35
A-W-5Udział w egzaminie2
90

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Wykład problemowy
M-3Ćwiczenie przedmiotowe

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena z aktywności w dyskusji na wykładach problemowych.
S-2Ocena podsumowująca: Ocena z egzaminu pisemnego obejmującego zakres wykładanego materiału.
S-3Ocena formująca: Ocena z przygotowania teoretycznego do zajęć w zakresie tematu ćwiczeń. Ocena sposobu rozwiązywania zadań podczas zajęć.
S-4Ocena podsumowująca: Ocena z kolokwium sprawdzającego umiejętność rozwiązywania zadań z zakresu analizy matematycznej i algebry liniowej.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IC_1A_B/01/01_W01
Ma wiedzę z zakresu analizy matematycznej i algebry liniowej na poziomie niezbędnym do ilościowego opisu, rozumienia i modelowania problemów z zakresu inżynierii cyfryzacji.
IC_1A_W01C-1T-W-7, T-W-8, T-W-10, T-W-12, T-W-6, T-W-1, T-W-2, T-W-4M-1, M-2S-2, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IC_1A_B/01/01_U01
Ma umiejętność zastosowania podstawowych metod analizy matematycznej i algebry liniowej do rozwiązywania problemów z zakresu inżynierii cyfryzacji
IC_1A_U17C-2, C-3T-A-7, T-A-3, T-A-4, T-A-5, T-A-6, T-A-2, T-A-1M-3S-3, S-4

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
IC_1A_B/01/01_W01
Ma wiedzę z zakresu analizy matematycznej i algebry liniowej na poziomie niezbędnym do ilościowego opisu, rozumienia i modelowania problemów z zakresu inżynierii cyfryzacji.
2,0Student nie zna podstawowych pojęć z zakresu analizy matematyczej i algebry liniowej
3,0Student zna podstawowe pojęcia z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz)
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
IC_1A_B/01/01_U01
Ma umiejętność zastosowania podstawowych metod analizy matematycznej i algebry liniowej do rozwiązywania problemów z zakresu inżynierii cyfryzacji
2,0Student nie umie zastosować podstawowych pojęć z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz) do rozwiązywania prostych zadań
3,0Student umie zastosować podstawowe pojęcia z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz) do rozwiązywania prostych zadań
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Bronsztejn I. N., Siemiendiajew K. A., Musiol G., Mühlig H., Nowoczesne kompendium matematyki, Wydawnictwo Naukowe PWN, Warszawa, 2011
  2. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, część I i II, Wydawnictwo Naukowe PWN, Warszawa, 2011
  3. Rasiowa H., Wstęp do matematyki współczesnej, Wydawnictwo Naukowe PWN, Warszawa, 2009
  4. Kostrikin A. I – red, Zbiór zadań z algebry, Wydawnictwo Naukowe PWN, Warszawa, 2013

Literatura dodatkowa

  1. Gewert M., Skoczylas Z, Analiza matematyczna 1 i 2. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2004
  2. Gewert M., Skoczylas Z., Analiza matematyczna 1 i 2. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2004
  3. Gewert M., Skoczylas Z., Algebra liniowa 1 i 2. Definicje, twierdzenia, wzory., Oficyna Wydawnicza GiS, Wrocław, 2004
  4. Gewert M., Skoczylas Z., Algebra liniowa 1 i 2. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2004

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Liczby zespolone3
T-A-2Przestrzenie wektorowe2
T-A-3Macierze i wyznaczniki2
T-A-4Układy równań4
T-A-5Kolokwium2
T-A-6Ciągi liczbowe2
T-A-7Szeregi liczbowe3
T-A-8Funkcje2
T-A-9Granica i ciągłość funkcji2
T-A-10Pochodna funkcji2
T-A-11Zastosowania pierwszej pochodnej2
T-A-12Kolokwium4
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wstęp do algebry liniowej – działanie, grupa, ciało1
T-W-2Liczby zespolone – postacie liczby zespolonej, działania na liczbach zespolonych, rozwiązywanie równań w liczbach zespolonych1
T-W-3Repetytorium - funkcje trygonometryczne, wzory redukcyjne, związki trygonometryczne, tożsamości trygonometryczne, równania i nierówności trygonometryczne3
T-W-4Przestrzenie wektorowe - definicja, kombinacja liniowa wektorów, powłoka liniowa, liniowa zależność i niezależność wektorów, baza i wymiar przestrzeni, macierze i działania na macierzach3
T-W-5Repetytorium - działania na wektorach, układy równań (metoda podstawiania i przeciwnych współczynników), działania na wielomianach3
T-W-6Układy równań - wyznacznik macierzy, macierz odwrotna, równania macierzowe, układ Cramera, własności rzędu macierzy, twierdzenie Koneckera-Capelli'ego, układ jednorodny, metoda Gaussa3
T-W-7Ciągi - monotoniczność, granica, ciągi specjalne1
T-W-8Szeregi liczbowe - geometryczne, harmoniczne, przemienne, kryteria zbieżnosci1
T-W-9Repetytorium - własności potęg i pierwiastków, silnia, ciągi monotoniczne, ciągi arytmetyczne i geometryczne, suma wyrazów ciągu geometrycznego i arytmetycznego3
T-W-10Funkcje - definicja, własności, granice (kryterium ciągowe Heine'go), ciągłość2
T-W-11Repetytorium - postać kanoniczna funkcji, przekształcanie wykresu funkcji, funkcja kwadratowa i jej własności, równania i nierówności kwadratowe2
T-W-12Różniczkowanie - pochodna funkcji, ekstremum lokalne, twierdzenia Fermata, Rolle'a, Lagrange'a, monotoniczność funkcji, reguła de l'Hospitala3
T-W-13Repetytorium - rozkład wielomianu na czynniki, schemat Hornera, równania i nierówności wielomianowe, upraszczanie wyrażeń wymiernych, równania i nierówności wymierne4
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Udział w ćwiczeniach30
A-A-2Samodzielne rozwiązywanie zadań60
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach15
A-W-2Uczestnictwo w repetytorium15
A-W-3Studiowanie literatury23
A-W-4Przygotowanie do egzaminu35
A-W-5Udział w egzaminie2
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIC_1A_B/01/01_W01Ma wiedzę z zakresu analizy matematycznej i algebry liniowej na poziomie niezbędnym do ilościowego opisu, rozumienia i modelowania problemów z zakresu inżynierii cyfryzacji.
Odniesienie do efektów kształcenia dla kierunku studiówIC_1A_W01Ma wiedzę z zakresu matematyki i fizyki na poziomie niezbędnym do ilościowego opisu, rozumienia i modelowania problemów interdyscyplinarnych.
Cel przedmiotuC-1Zapoznanie studentów z podstawowymi metodami analizy matematycznej i algebry liniowej wykorzystywanymi w rozwiązywaniu problemów z zakresu inżynierii cyfryzacji
Treści programoweT-W-7Ciągi - monotoniczność, granica, ciągi specjalne
T-W-8Szeregi liczbowe - geometryczne, harmoniczne, przemienne, kryteria zbieżnosci
T-W-10Funkcje - definicja, własności, granice (kryterium ciągowe Heine'go), ciągłość
T-W-12Różniczkowanie - pochodna funkcji, ekstremum lokalne, twierdzenia Fermata, Rolle'a, Lagrange'a, monotoniczność funkcji, reguła de l'Hospitala
T-W-6Układy równań - wyznacznik macierzy, macierz odwrotna, równania macierzowe, układ Cramera, własności rzędu macierzy, twierdzenie Koneckera-Capelli'ego, układ jednorodny, metoda Gaussa
T-W-1Wstęp do algebry liniowej – działanie, grupa, ciało
T-W-2Liczby zespolone – postacie liczby zespolonej, działania na liczbach zespolonych, rozwiązywanie równań w liczbach zespolonych
T-W-4Przestrzenie wektorowe - definicja, kombinacja liniowa wektorów, powłoka liniowa, liniowa zależność i niezależność wektorów, baza i wymiar przestrzeni, macierze i działania na macierzach
Metody nauczaniaM-1Wykład informacyjny
M-2Wykład problemowy
Sposób ocenyS-2Ocena podsumowująca: Ocena z egzaminu pisemnego obejmującego zakres wykładanego materiału.
S-1Ocena formująca: Ocena z aktywności w dyskusji na wykładach problemowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojęć z zakresu analizy matematyczej i algebry liniowej
3,0Student zna podstawowe pojęcia z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz)
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIC_1A_B/01/01_U01Ma umiejętność zastosowania podstawowych metod analizy matematycznej i algebry liniowej do rozwiązywania problemów z zakresu inżynierii cyfryzacji
Odniesienie do efektów kształcenia dla kierunku studiówIC_1A_U17Ma umiejętności w zakresie przeprowadzenia analizy problemów mających bezpośrednie odniesienie do zdobytej wiedzy
Cel przedmiotuC-2Ukształtowanie umiejętności wykorzystania metod analizy matematycznej i algebry liniowej w rozwiązywaniu zadań z zakresu inżynierii cyfryzacji
C-3Ukształtowanie umiejętności wykorzystywania narzędzi informatycznych przy rozwiązywaniu zadań z analizy matematycznej i algebry liniowej
Treści programoweT-A-7Szeregi liczbowe
T-A-3Macierze i wyznaczniki
T-A-4Układy równań
T-A-5Kolokwium
T-A-6Ciągi liczbowe
T-A-2Przestrzenie wektorowe
T-A-1Liczby zespolone
Metody nauczaniaM-3Ćwiczenie przedmiotowe
Sposób ocenyS-3Ocena formująca: Ocena z przygotowania teoretycznego do zajęć w zakresie tematu ćwiczeń. Ocena sposobu rozwiązywania zadań podczas zajęć.
S-4Ocena podsumowująca: Ocena z kolokwium sprawdzającego umiejętność rozwiązywania zadań z zakresu analizy matematycznej i algebry liniowej.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie umie zastosować podstawowych pojęć z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz) do rozwiązywania prostych zadań
3,0Student umie zastosować podstawowe pojęcia z zakresu analizy matematyczej (funkcja, granica, pochodna, całka) i algebry liniowej (liczba zespolona, macierz) do rozwiązywania prostych zadań
3,5
4,0
4,5
5,0