Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)
specjalność: Engineering Structures
Sylabus przedmiotu Sustainable Design and Environmental Engineering 2:
Informacje podstawowe
Kierunek studiów | Civil Engineering | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Sustainable Design and Environmental Engineering 2 | ||
Specjalność | International Construction Management | ||
Jednostka prowadząca | Visiting Professor | ||
Nauczyciel odpowiedzialny | Visiting Professor <Visiting@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | angielski |
Blok obieralny | 8 | Grupa obieralna | 2 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Intermediate skills in structural design. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | The aim of the course is to gain knowledge and properly use of innovative solutions in sustainable design |
C-2 | The wider perspective in Environmental Engineering gives the student expertise in technical fields. The main aim of this course is to build the designers own interpretation and implementation of environmental systems thinking. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Sustainable design of a building with chosen elements of building materials and technology on given location and external parameters | 30 |
30 | ||
wykłady | ||
T-W-1 | Basic principles of sustainable design. Environmental engineering, built environment, evironmental impact assessment. | 1 |
T-W-2 | BIM in sustainable design and environmental engineering. | 1 |
T-W-3 | Innovative solutions to problems of environmental engineering in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. | 2 |
T-W-4 | The low-carbon building - different approaches to assessing the criteria of what constitutes a low-carbon building. | 3 |
T-W-5 | The climate responsive building design strategies and their barriers such as: the innovative character and the lack of dedicated knowledge on the synthesis of design, building performance and implementation in the design process. | 2 |
T-W-6 | The strategies that address to reducing energy consumption and providing a comfortable and healthy environment during the Climate change era (retrieving renewable energy resources. | 2 |
T-W-7 | Air and water pollutions a worldwide problem - research review into an air and water purification in big cities. | 2 |
T-W-8 | The global climate change - disasters and hazards - infrastructures to harvester plants reduce disaster’s impact to cities. | 2 |
T-W-9 | The global climate change - rainwater harvester issues - infrastructures to collect rainwater in a big cities and agriculture water problems. | 2 |
T-W-10 | Resilience in design and operation | 2 |
T-W-11 | High-Performance Building. green, sustainable. Triple bottom line concept (people, profit and planet). Sustainable Sites: locating the project, Greenfield, Greyfield, and Brownfield Sites. Building effects on the site and region (Urban Heat Island (UHI) Effect, Stormwater management, erosion, and sedimentation. | 4 |
T-W-12 | Energy sources and generation. Conventional and renewable energy sources. Building certification systems and code requirements (LEED certification) | 2 |
T-W-13 | Future trends in sustainable design and environmental engineering. Energy informatics, Smart buildings and smart building systems, smart grid, smart cities. Sustainable materials and technologies (Additive Construction, robotics, modularization). Minimization of plastic waste. Building Energy Labelling, energy performance certificate (EPC). | 3 |
T-W-14 | Mega civil engineering projects versus sustainability, case study | 2 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Participation in project classes | 30 |
A-P-2 | Analysis of design elements, parameters and local conditions | 5 |
A-P-3 | Desk study with analysis of literature and standards | 5 |
A-P-4 | Developing the project | 12 |
A-P-5 | Tutorials and consulting hours | 5 |
A-P-6 | Discussion on project content, corrections and passing the subject | 3 |
60 | ||
wykłady | ||
A-W-1 | Participation in lectures and participation in discussions | 30 |
A-W-2 | Self study and supplementary readings | 20 |
A-W-3 | Tutorials and consultancies | 6 |
A-W-4 | Exam | 4 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Lectures with Power Point. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Exam |
S-2 | Ocena podsumowująca: Execution of design project |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
CE_2A_ICM/D/10-k_W01 Knows and understands technical and technological conditions of Sustainable Design and Environmental Engineering. | B-A_2A_W14, B-A_2A_W13 | — | — | C-1, C-2 | T-P-1, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9 | M-1 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
CE_2A_ICM/D/10-k_U01 Is able to integrate knowledge in sustainable design and environmental engineering, can apply a systematic approach taking into account environmental issues in design process. Can identify and formulate engineerig tasks related to sustainability and environment. | B-A_2A_U16, B-A_2A_U11 | — | — | C-1, C-2 | T-P-1, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9 | M-1 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
CE_2A_ICM/D/10-k_K01 The student is ready to reflect on sustainable aspects of civil and environmental engineering, including responsibility for decisions made. | B-A_2A_K04, B-A_2A_K03 | — | — | C-1, C-2 | T-P-1, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9 | M-1 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
CE_2A_ICM/D/10-k_W01 Knows and understands technical and technological conditions of Sustainable Design and Environmental Engineering. | 2,0 | |
3,0 | Student poorly knows and understands sustainability importance in design process as well as environmental engineering role in it. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
CE_2A_ICM/D/10-k_U01 Is able to integrate knowledge in sustainable design and environmental engineering, can apply a systematic approach taking into account environmental issues in design process. Can identify and formulate engineerig tasks related to sustainability and environment. | 2,0 | |
3,0 | Student is hardly able to demonstrate an ability to evaluate and critically assess specific Sustainable Design and Environmental Engineering design outcomes. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
CE_2A_ICM/D/10-k_K01 The student is ready to reflect on sustainable aspects of civil and environmental engineering, including responsibility for decisions made. | 2,0 | |
3,0 | The student is poorly ready to reflect on a clear demonstration of an understanding principles of the sustainability in building design and potential further application of the knowledge in practice. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Vassigh S., Özer E., Spiegelhalter T., Best Practices in Sustainable Building Design, J. Ross Publishing, USA, 2013
- ASHRAE, High-Performance Buildings Simplified. Designing, Constructing, and Operating Sustainable Commercial Buildings, ASHRAE, Atlanta, USA, 2019
- Nazaroff W.W., Alvarez-Cohen L., Environmental Engineering Science, John Wiley and Sons, London, 2014
- Andrew S. Smith, John P. Fort, ICE Manual of Construction Materials. Section 4.36. Chapter 36 Sustainability and recycling of masonry materials, Institution of Civil Engineers. ICE Manuals, Londyn, 2009
- Editors: WILLIAM E. KELLY, BARBARA LUKE, RICHARD N. WRIGHT, Engineering for Sustainable Communities. Principles and Practices, ASCE Press, Reston, Virginia, USA, 2017
- Kibert Ch. J., Sustainable Construction: Green Building Design and Delivery, John Wiley and Sons, London, 2016
- Danatzko J.M., Sezen H., Sustainable Structural Design Methodologies, ASCE Library Access provided by ZUT, 2011
- Krygiel E., Nies B., Green BIM: Successful Sustainable Design with Building Information Modeling, John Wiley and Sons, London, 2018
- Gjorv O. E., Sakai K., Concrete Technology for a Sustainable Development in 21st Century, John Wiley and Sons, London, 2014
- Dh. Yeo, R. D. Gabbai, Sustainable design of reinforced concrete structures through embodied energy optimization, Energy and Buildings, Elsevier, 2011, Vol. 43, Issue 8, pp. 2028-2033.
- Crawford R H., Life Cycle Assessment in the Built Environment, Taylor and Francis, London, 2011
Literatura dodatkowa
- Blackwood D. i inni, Transformation in a changing climate: A Research Agenda. Climate and Development (Clim Dev), Taylor & Francis, 2017
- Blackwood D., Falconer R., Gilmour D., Isaacs J., Indicator Modelling and Interactive Visualisation for Urban Sustainability Assessment. E-Planning and Collaboration (pp.486-508), Abertay University, Dundee, Dundee, 2018
- Editors: Wang Y., Zhu Y., Geoffrey Q. P., ICCREM 2018 - Sustainable Construction and Prefabrication, American Society of Civil Engineers (ASCE), Reston, Virginia, USA, 2018
- Goia F., Perino M., Serra V., Zanghirella F., Towards an active, responsive, and solar building envelope, Journal of Green Building, 2011, No. 4, vol.5, pp. 121-136.
- Dh. Yeo, R. D. Gabbai, Sustainable design of reinforced concrete structures through embodied energy optimization, Energy and Buildings, Elsevier, 2011, Vol. 43, No. 8., pp. 2028-2033.
- Velikov K., Thün G, Responsive Building Envelopes: Characteristics and Evolving Paradigms. In Design and Construction of High Performance Homes, Routledge Press, London, 2012, pp. 75-91.
- Moon K. S., Sustainable structural engineering strategies for tall buildings, John Wiley and Sons, London, 2016
- WANG G., HE G. BlAN L., Advanced Building Materials. Sustainable Construction Project under Lean Construction Theory, e 201 1 International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2011, Trans Tech Publications Ltd, Switzerland, 2011
- Editors: Yong K., Fernanda Leite, Amir Behzadan, Chao Wang, ASCE International Conference on Computing in Civil Engineeriing 2019, Computing in Civil Engineering 2019 Smart Cities, Sustainability, and Resilience, Reston, Virginia, USA. ASCE, 2019