Wydział Informatyki - Informatyka (N2)
Sylabus przedmiotu Przetwarzanie sygnałów kognitywnych:
Informacje podstawowe
| Kierunek studiów | Informatyka | ||
|---|---|---|---|
| Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
| Tytuł zawodowy absolwenta | magister inżynier | ||
| Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
| Profil | ogólnoakademicki | ||
| Moduł | — | ||
| Przedmiot | Przetwarzanie sygnałów kognitywnych | ||
| Specjalność | Systemy komputerowe zorientowane na człowieka | ||
| Jednostka prowadząca | Katedra Inżynierii Systemów Informacyjnych | ||
| Nauczyciel odpowiedzialny | Jarosław Jankowski <Jaroslaw.Jankowski@zut.edu.pl> | ||
| Inni nauczyciele | Anna Lewandowska <Anna.Tomaszewska@zut.edu.pl>, Adam Nowosielski <Adam.Nowosielski@zut.edu.pl>, Edward Półrolniczak <Edward.polrolniczak@zut.edu.pl>, Izabela Rejer <Izabela.Rejer@zut.edu.pl> | ||
| ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
| Forma zaliczenia | egzamin | Język | polski |
| Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
| KOD | Wymaganie wstępne |
|---|---|
| W-1 | Podstawy matematyki i programowania w dowolnym języku |
Cele przedmiotu
| KOD | Cel modułu/przedmiotu |
|---|---|
| C-1 | Zapoznanie studentów z charakterystycznymi cechami sygnałów kognitywnych, sprzętem służącym do ich rejestrowania oraz metodami służącymi do ich przetwarzania. |
| C-2 | Wykształcenie umiejętności adaptacji algorytmów przetwarzania sygnałów do charakterystycznych cech wybranych sygnałów kognitywnych. |
Treści programowe z podziałem na formy zajęć
| KOD | Treść programowa | Godziny |
|---|---|---|
| laboratoria | ||
| T-L-1 | Przetwarzanie sygnału EKG/GSR. (A. Lewandowska). | 2 |
| T-L-2 | Filtrowanie danych okulograficznych. (A. Lewandowska). | 1 |
| T-L-3 | Wykorzystanie danych z okulografu do sterowania aplikacją czasu rzeczywistego. (A. Lewandowska). | 1 |
| T-L-4 | Analiza głosu – określanie jakości głosu. (E. Półrolniczak) | 1 |
| T-L-5 | Analiza mowy - rozpoznawanie samogłosek. (E. Półrolniczak) | 1 |
| T-L-6 | Analiza głosu - wyznaczanie częstotliwości podstawowej (F0) głosu. (E. Półrolniczak) | 2 |
| T-L-7 | Opracowanie projektu klasyfikatora regułowego klasyfikującego sygnał z interfejsu Blinker na podstawie jego przebiegu czasowego – tryb offline. (I. Rejer) | 4 |
| T-L-8 | Symulacja sterowania w trybie online za pomocą opracowanego klasyfikatora (interfejs Blinker). (I. Rejer) | 2 |
| T-L-9 | Wykorzystanie metod filtracji częstotliwościowej i statystycznej do eliminacji artefaktów EOG. (I. Rejer). | 2 |
| T-L-10 | Zastosowanie metod CAR oraz ICA w preprocessingu sygnału EEG. (I. Rejer) | 2 |
| T-L-11 | Ekstrakcja cech w interfejsie SSVEP (moc pasmowa, moc prążków częstotliwości, CCA). (I. Rejer | 2 |
| 20 | ||
| wykłady | ||
| T-W-1 | Metody stosowane w procesie przetwarzania sygnału EKG i GSR. (A. Lewandowska) | 2 |
| T-W-2 | Przetwarzanie sygnałów okulograficznych. (A. Lewandowska) | 1 |
| T-W-3 | Praktyczne zastosowanie danych okulograficznych w systemach wykorzystujących obrazowanie komputerowe. (A. Lewandowska) | 1 |
| T-W-4 | Rozpoznawanie mowy, określanie jakości głosu. (E. Półrolniczak) | 2 |
| T-W-5 | Analiza emocji przekazywanych w głosie. (E. Półrolniczak) | 1 |
| T-W-6 | Oddziaływanie na użytkownika dźwiękami (E. Półrolniczak) | 1 |
| T-W-7 | Praktyczne aspekty przetwarzania sygnałów kognitywnych. Charakterystyka sygnału elektroencefalograficznego (EEG). (I. Rejer) | 2 |
| T-W-8 | Sygnał EEG - obszary zastosowań. Definicja interfejsu mózg-komputer; podstawowe typy interfejsów; rodzaje rozpoznawanej aktywności mózgowej. (I. Rejer) | 2 |
| T-W-9 | Artefakty zakłócające sygnał EEG i metody ich redukcji. (I. Rejer) | 2 |
| T-W-10 | Preprocessing sygnału EEG (filtracja częstotliwościowa, statystyczna, przestrzenna: CAR, ICA). (I. Rejer) | 2 |
| T-W-11 | Metody ekstrakcji cech z sygnału EEG (w dziedzinie czasu, CCA, punkty charakterystyczne, statystyki). (I. Rejeri) | 2 |
| T-W-12 | Ekstrakcja cech częstotliwościowych z sygnału EEG (moc pasmowa, asymetria międzypółkulowa, metryki oparte na mocy). Normalizacja cech, okres referencyjny. (I. Rejer) | 2 |
| 20 | ||
Obciążenie pracą studenta - formy aktywności
| KOD | Forma aktywności | Godziny |
|---|---|---|
| laboratoria | ||
| A-L-1 | Uczestnictwo w laboratoriach | 20 |
| A-L-2 | Przygotowanie sprawozdań | 20 |
| A-L-3 | Konsultacje do laboratoriów | 2 |
| A-L-4 | Analiza literatury | 8 |
| 50 | ||
| wykłady | ||
| A-W-1 | Uczestnictwo w wykładach | 20 |
| A-W-2 | Przygotowanie do zaliczenia | 10 |
| A-W-3 | Konsultacje | 2 |
| A-W-4 | Analiza literatury | 16 |
| A-W-5 | Eegzamin | 2 |
| 50 | ||
Metody nauczania / narzędzia dydaktyczne
| KOD | Metoda nauczania / narzędzie dydaktyczne |
|---|---|
| M-1 | Wykład z prezentacjami i przykładami |
| M-2 | Ćwiczenia laboratoryjne i realizacja zadań praktycznych |
Sposoby oceny
| KOD | Sposób oceny |
|---|---|
| S-1 | Ocena podsumowująca: Wykład: ocena podsumowująca. Zaliczenie pisemne z pytaniami praktycznymi, pytaniami w formie wyboru i opisu. |
| S-2 | Ocena podsumowująca: Laboratoria: ocena na podstawie sprawozdań i obecności. |
Zamierzone efekty uczenia się - wiedza
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| I_2A_D03.04_W01 Student posiada wiedzę w zakresie charakterystycznych cech wybranych sygnałów kognitywnych, metod służących do ich przetwarzania oraz sprzętu wykorzystywanego do ich rejestracji. | I_2A_W02, I_2A_W04 | — | — | C-1 | T-W-6, T-W-2, T-W-3, T-W-4, T-W-5, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-1 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| I_2A_D03.04_U01 Student będzie potrafił zarejestrować wybrane sygnały kognitywne, dobrać bądź zaadoptować algorytmy służące do ich przetworzenia oraz dokonać analizy tychże sygnałów. | I_2A_U02, I_2A_U03 | — | — | C-2 | T-L-2, T-L-3, T-L-4, T-L-5, T-L-11, T-L-6, T-L-8, T-L-9, T-L-10, T-L-7, T-L-1 | M-2 | S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
| Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
|---|---|---|---|---|---|---|---|
| I_2A_D03.04_K01 Aktywna postawa poznawcza, umocnienie świadomości potrzeby pozyskiwania aktualnej wiedzy do rozwiązywania problemów i wzmocnienie chęci rozwoju zawodowego. | I_2A_K02, I_2A_K03 | — | — | C-1, C-2 | T-W-5, T-W-12, T-W-3, T-L-5, T-W-2, T-W-1, T-L-8, T-L-11, T-L-6, T-W-10, T-W-6, T-W-4, T-L-7, T-L-2, T-L-3, T-W-11, T-L-1, T-L-9, T-W-8, T-L-10, T-L-4, T-W-7, T-W-9 | M-1, M-2 | S-2, S-1 |
Kryterium oceny - wiedza
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| I_2A_D03.04_W01 Student posiada wiedzę w zakresie charakterystycznych cech wybranych sygnałów kognitywnych, metod służących do ich przetwarzania oraz sprzętu wykorzystywanego do ich rejestracji. | 2,0 | Nie posiada podstawowej wiedzy na temat cech charakterystycznych wybranych sygnałów kognitywnych. |
| 3,0 | Posiada podstawową wiedzę na temat cech charakterystycznych wybranych sygnałów kognitywnych. | |
| 3,5 | Posiada podstawową wiedzę na temat cech charakterystycznych wybranych sygnałów kognitywnych oraz metod ich przetwarzania. | |
| 4,0 | Posiada podstawową wiedzę na temat cech charakterystycznych wybranych sygnałów kognitywnych, metod ich przetwarzania oraz sprzętu wykorzystywanego do ich rejestracji. | |
| 4,5 | Posiada znaczną wiedzę na temat cech charakterystycznych wybranych sygnałów kognitywnych oraz metod ich przetwarzania, a także podstawową wiedzę na temat sprzętu wykorzystywanego do ich rejestracji. | |
| 5,0 | Posiada znaczną wiedzę na temat cech charakterystycznych wybranych sygnałów kognitywnych, metod ich przetwarzania oraz sprzętu wykorzystywanego do ich rejestracji. |
Kryterium oceny - umiejętności
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| I_2A_D03.04_U01 Student będzie potrafił zarejestrować wybrane sygnały kognitywne, dobrać bądź zaadoptować algorytmy służące do ich przetworzenia oraz dokonać analizy tychże sygnałów. | 2,0 | Student nie potrafi przetworzyć nawet jednego typu sygnału kognitywnego. |
| 3,0 | Student potrafi przetworzyć wybrany sygnał kognitywny. | |
| 3,5 | Student potrafi przetworzyć co najmniej dwa wybrane sygnały kognitywne. | |
| 4,0 | Student potrafi przetworzyć i przeanalizować wybrany sygnał kognitywny. | |
| 4,5 | Student potrafi przetworzyć i przeanalizować co najmniej dwa wybrane sygnały kognitywne. | |
| 5,0 | Student potrafi przetworzyć i przeanalizować wszystkie rodzaje sygnałów kognitywnych omawiane w trakcie zajęć laboratoryjnych. |
Kryterium oceny - inne kompetencje społeczne i personalne
| Efekt uczenia się | Ocena | Kryterium oceny |
|---|---|---|
| I_2A_D03.04_K01 Aktywna postawa poznawcza, umocnienie świadomości potrzeby pozyskiwania aktualnej wiedzy do rozwiązywania problemów i wzmocnienie chęci rozwoju zawodowego. | 2,0 | |
| 3,0 | Student aktywnie rozwiązuje postawione problemy wykazując samodzielność w doborze odpowiednich środków technicznych i metod inżynierskich. | |
| 3,5 | ||
| 4,0 | ||
| 4,5 | ||
| 5,0 |
Literatura podstawowa
- S. W. Smith, Digital Signal Processing. A practical Guide for Engineers and Scientists, 2003
- Official Matlab site: http://www.mathworks.com/help/matlab/