Wydział Kształtowania Środowiska i Rolnictwa - Agrobioinżynieria (S1)
specjalność: Zarządzanie środowiskiem
Sylabus przedmiotu Wytwarzanie biopaliw stałych i biogazu rolniczego:
Informacje podstawowe
Kierunek studiów | Agrobioinżynieria | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Wytwarzanie biopaliw stałych i biogazu rolniczego | ||
Specjalność | Produkcja rolnicza | ||
Jednostka prowadząca | Katedra Agroinżynierii | ||
Nauczyciel odpowiedzialny | Marek Śnieg <Marek.Snieg@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 9 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Student zna gatunki roślin przydatnych w produkcji biopaliw stałych. |
W-2 | Znajomość podstawowych zagadnień dotyczących procesów chemicznych i mikrobiologicznych oraz biologii roślin, jak również wykonywania podstawowych prac laboratoryjnych. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studenta z terminologią biopaliw stałych. |
C-2 | Zaznajomienie studenta z technikami i technologiami przetwarzania biomasy na biopaliwa oraz badaniami parametrów fizycznych biopaliw stałych na podstawie obowiązujących norm |
C-3 | Zapoznanie studentów z technologią wytwarzania biogazu, jego właściwościami, uzdatnianiem, magazynowaniem i zastosowaniem, typami biogazowni oraz materiałami organicznymi wykorzystywanymi do produkcji biogazu i ich pozyskiwaniem |
C-4 | Umiejętność samodzielnego wyliczenia parametrów eksploatacyjnych instalacji biogazowej |
C-5 | Ukształtowanie znajomości z zakresu procesu inwestycyjnego oraz umiejętności przeprowadzania podstawowych analiz fizyko-chemicznych substratów do produkcji biogazu |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Zaznajomienie z przepisami BHP obowiązującymi w laboratorium oraz organizacją zajęć. Oznaczanie zawartości wilgoci surowców i aglomeratów. Oznaczanie gęstości nasypowej i utrzęsionej rozdrobnionych surowców. Wytwarzanie peletów z trocin. Oznaczanie gęstości nasypowej biomasy sypkiej. Oznaczanie gęstości peletów i brykietów. Pomiar wytrzymałości mechanicznej peletów. Pomiar twardości peletów. Sporządzenie kiszonek do badań w biogazowni „eksperymentalnej”. Oznaczenie zawartości suchej masy, suchej masy organicznej, odczynu pH przed zakiszeniem substratu. Złożenie „eksperymentalnej” biogazowni na potrzeby ćwiczeń laboratoryjnych. Oznaczenie zawartości suchej masy, suchej masy organicznej, odczynu pH po zakiszeniu substratu. Ocena organoleptyczna kiszonek. Nastawienie substratów do fermentacji (wyliczenie proporcji). Prowadzenie oznaczeń ilości i jakości biogazu, normalizacja wyników badań. Podstawowe parametry procesu technologicznego (HRT, BR, sm, pH, wydajność produkcji biogazu a moc agregatu kogeneracyjnego) – obliczenia. Projektowanie technologii produkcji biogazu – wykonanie projektu. Projektowanie „eksperymentalnej” biogazowni | 30 |
30 | ||
wykłady | ||
T-W-1 | Biopaliwa stałe - terminologia, definicje i określenia. Drewno, odpady drzewne, biomasa zielna i biomasa owocowa. Mieszanki i mieszaniny biopaliw stałych. Zasoby biopaliw stałych. Wykorzystanie biopaliw stałych jako źródła energii. Właściwości biopaliw stałych. Suszenie, rozdrabnianie i przechowywanie biopaliw stałych, zrębkowanie. Techniki łupania drewna. Specyfikacje i klasy biopaliw w postaci peletów i brykietów. Podstawy procesu peletyzacji i brykietowania. Linie technologiczne oraz urządzenia do produkcji peletów i brykietów. Definicja biogazu. Rodzaje instalacji do wytwarzania biogazu. Fermentacja metanowa w procesie produkcji biogazu. Parametry środowiska i procesu fermentacji. Rodzaje substratów i sposoby ich dobierania. Metody szacowania wydajności substratów do produkcji biogazu i ich mieszanin. Oczyszczanie i wzbogacanie biogazu. Urządzenia towarzyszące i przekształcające biogaz na energię końcową. Przykładowe rozwiązania instalacji do produkcji biogazu. Możliwości wykorzystania biogazu. Bezpieczeństwo i zagrożenia pracy biogazowni. Możliwości wykorzystania pulpy pofermentacyjnej. Formalne i ekonomiczne aspekty inwestycji polegających na budowie biogazowni. | 30 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 30 |
A-L-2 | Przygotowanie do zajęć i do zaliczenia | 18 |
A-L-3 | Konsultacje | 2 |
50 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 30 |
A-W-2 | Analiza literatury związanej z treściami wykładowymi | 10 |
A-W-3 | Przygotowanie do zaliczenia | 8 |
A-W-4 | Konsultacje | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | wykład informacyjny, |
M-2 | objaśnienie, |
M-3 | metoda praktyczna – pokaz, |
M-4 | wykonywanie zadań praktycznych. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Oceny za wykonane ćwiczenia labolatoryjne i sporządzenie sprawozdań. |
S-2 | Ocena podsumowująca: Zaliczenie pisemne treści wykładów. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ABI_1A_R14-01_W01 Studenci zna terminologię związaną z biopaliwami stałymi oraz techniki i technologie przetwarzania biomasy na biopaliwa. Ma wiedzę w zakresie technologii wytwarzania biogazu i jego właściwości, uzdatniania, magazynowania i zastosowania, typów biogazowni, rodzajów materiałów organicznych wykorzystywanych do produkcji biogazu oraz ich pozyskiwania, wylicza parametry ekploatacyjne instalacji biogazowej, rozróznia etapy procesu inwestycyjnego, scharakteryzuje podstawowe analizy fizyko-chemiczne substratów do produkcji biogazu | ABI_1A_W01, ABI_1A_W02 | — | — | C-1, C-2, C-3, C-5 | T-W-1 | M-1, M-2 | S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ABI_1A_R14-01_U01 Student umiejętnie dobiera maszyny i urządzenia niezbędne do przetwarzania biomasy na biopaliwa oraz potrafi praktycznie określać parametry fizyczne biopaliw stałych na podstawie obowiązujących norm. Wyszukuje róznice w technologiach pozyskiwania biogazu z różnych źródeł i materiałów organicznych, interpretuje parametry eksploatacyjne instalacji biogazowej, dobiera urządzenia ciągu technologicznego biogazowni, analizuje etapy procesu inwestycyjnego, wykorzystuje wyniki analiz fizyko-chemicznych substratów | ABI_1A_U07, ABI_1A_U08 | — | — | C-2 | T-L-1 | M-3, M-4, M-2 | S-1 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ABI_1A_R14-01_K01 Student rozumie potrzebę stosowania odpowiednich technik i technologii w produkcji biopaliw z zachowaniem ich parametrów jakościowych. Ma świadomość znaczenia energii dla społeczeństwa. Jest świadomy ograniczenia posiadanej wiedzy i umiejętności, rozumie potrzebę dalszego ich pogłębiania oraz ciągłego wyszukiwania aktualnych informacji zawodowych w literaturze fachowej i innych źródłach, również w języku obcym | ABI_1A_K01, ABI_1A_K03 | — | — | C-1, C-2 | T-W-1, T-L-1 | M-3, M-4, M-1, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ABI_1A_R14-01_W01 Studenci zna terminologię związaną z biopaliwami stałymi oraz techniki i technologie przetwarzania biomasy na biopaliwa. Ma wiedzę w zakresie technologii wytwarzania biogazu i jego właściwości, uzdatniania, magazynowania i zastosowania, typów biogazowni, rodzajów materiałów organicznych wykorzystywanych do produkcji biogazu oraz ich pozyskiwania, wylicza parametry ekploatacyjne instalacji biogazowej, rozróznia etapy procesu inwestycyjnego, scharakteryzuje podstawowe analizy fizyko-chemiczne substratów do produkcji biogazu | 2,0 | |
3,0 | Student w stopniu minimalnym opanował wiedzę w zakresie terminologii, technik i technologii biopaliw stałych.Student opanował podstawową wiedzę z przedmiotu dotyczącą technologii wytwarzania biogazu, typów biogazowni i materiałów wykorzystywanych do jego pozyskiwania, wymienia podstawowe parametry eksploatacyjne biogazowni, wskazuje podstawowe analizy fizyko-chemiczne substratów do produkcji biogazu. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ABI_1A_R14-01_U01 Student umiejętnie dobiera maszyny i urządzenia niezbędne do przetwarzania biomasy na biopaliwa oraz potrafi praktycznie określać parametry fizyczne biopaliw stałych na podstawie obowiązujących norm. Wyszukuje róznice w technologiach pozyskiwania biogazu z różnych źródeł i materiałów organicznych, interpretuje parametry eksploatacyjne instalacji biogazowej, dobiera urządzenia ciągu technologicznego biogazowni, analizuje etapy procesu inwestycyjnego, wykorzystuje wyniki analiz fizyko-chemicznych substratów | 2,0 | |
3,0 | Student ma problemy z rzetelnym określeniem parametrów fizycznych biopaliw . Student opanował podstawowe umiejętności wyszukiwania rożnic w technologiach pozyskiwania biogazu, interpretacji parametrów eksploatacyjnych, dobierania urządządzeń ciągu technologicznego, analizy etapów procesu inwestycyjnego praz wykorzystania wyników analiz fizyko-chemicznych substratów. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
ABI_1A_R14-01_K01 Student rozumie potrzebę stosowania odpowiednich technik i technologii w produkcji biopaliw z zachowaniem ich parametrów jakościowych. Ma świadomość znaczenia energii dla społeczeństwa. Jest świadomy ograniczenia posiadanej wiedzy i umiejętności, rozumie potrzebę dalszego ich pogłębiania oraz ciągłego wyszukiwania aktualnych informacji zawodowych w literaturze fachowej i innych źródłach, również w języku obcym | 2,0 | |
3,0 | Student w minimalnym stopniu rozumie potrzebę zachowania parametrów jakościowych biopaliw stałych. Student opanował podstawową świadomość otwartości na nowe technologie i energetycznego wykorzystania materiałów organicznych do produkcji energii, kreatywności i postępowania zgodnie z wymogami formalnalnymi procesu inwestycyjnego, a także świadomości zasad pracy w laboratorium biogazu. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Frączek J., Kaczorowski J., Ślipek Z., Horabik J., Molenda M., Standaryzacja metod pomiaru właściwości fizyczno-mechanicznych roślinnych materiałów ziarnistych., Instytut Agrofizyki PAN 2003, Acta Agrophysica, Lublin, 2003, ISSN 1234-4125
- Podkówka W. (red.), Biogaz rolniczy odnawialne źródło energii. Teoria i praktyczne zastosowanie., Powszechne Wydawnictwo Rolnicze i Leśne, Warszawa, 2012
- Hejft R., Ciśnieniowa aglomeracja materiałów roślinnych., Politechnika Białostocka, Instytut Technologii Eksploatacji w Radomiu., Radom, 2002, ISBN 83-7204-251-9.
- Węglarzy K., Podkówka W. (red.), Agrobiogazownia, Instytut Zootechniki Państwowy Instytut Badawczy, Grodziec Śląski, 2010
- Rabiul Islam, Naruttam Kumar Roy, Saifur Rahman, Renewable Energy and the Environment, Springer Nature Singapore Pte Ltd., 2011, ISBN 978-981-10-7287-1 (eBook), https://doi.org/10.1007/978-981-10-7287-1
- Romaniuk W., Głaszczka A., Biskupska K., Analiza rozwiązań instalacji biogazowych dla gospodarstw rodzinnych i farmerskich, Instytut Technologiczno-Przyrodniczy, Falenty, 2012
- Lewandowski W. M., Biopaliwa. Proekologiczne odnawialne źródła energii., WNT, Warszawa, 2013, ISBN 978-83-63623-73-9.
- Cukrowski A., Mroczkowski P., Onisk-Popławska A., Wiśniewski G., Biogaz rolniczy- produkcja i wykorzystanie, Mazowiecka Agencja Energetyczna, Warszawa, 2009, dostępny w formacie pdf
- Grzybek A., Modelowanie energetycznego wykorzystania biomasy., ITP. Falenty – Warszawa., Falenty – Warszawa., 2010, ISBN 978-83-62416-08-0.
- Glijer L., Suszenie drewna i nie tylko., Wyd. Wieś Jutra., Warszawa, 2011, ISBN: 978-83-6281-50-3
- Grochowicz J., Zaawansowane techniki wytwarzania przemysłowych mieszanek paszowych., Pagros s.c., Lublin, 1998, ISBN 83-910152-0-3.
- Kozakiewicz P., Nicewicz D., Surowce włókniste i sposoby ich rozdrabniania., Wydawnictwo SGGW, Warszawa, 2003, ISBN 83-7244-457-9.
Literatura dodatkowa
- Czasopismo „Czysta Energia”, . ISSN 1643-126X
- Jabłoński W., Wnuk J., Zarządzanie odnawialnymi źródłami energii. Aspekty ekonomiczno-techniczne., Oficyna Wydawnicza „Humanitas”, Sosnowiec, 2009
- Czasopismo „Agroenergetyka”., ISSN 1644-3187.
- Klugmann-Radziemska E., Odnawialne źródła energii przykłady obliczeniowe, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2013
- Normy dot. biopaliw stałych.
- Cebula J., Wybrane metody oczyszczania biogazu rolniczego i wysypiskowego, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012
- Cenian A., Gołaszewski J., Noch T., Energetyka – Biogaz. Wyniki badań, technologie, prawo i ekonomika w Rejonie Morza Bałtyckiego., Wydawnictwo Gdańska Szkoła Wyższa, Gdańsk, 2012
- Czasopismo, Czysta Energia, ABRYS Sp. z o.o.
- Czasopismo, Agroenergetyka, Apra
- Niemiecka Norma DIN 38 414 – S8
- Niemiecka Norma VDI 4630
- Czasopismo, Glob Energia - odnawialne źródła energii